統 言十 學（—）

Anderson＇s Statistics for Business \＆Economics（14／E）

授課教師：吳漢銘 國立政治大學統計學系

開課單位：統計系
科目代碼：000360041
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

111 學年度第 2 學期

目錄

Ch 10．Inference About Means and Proportions with Two Populations
Ch 11．Inferences About Population Variances
Ch 12．Comparing Multiple Proportions，Test of Independence and Goodness of Fit
Ch 13．Experimental Design and Analysis of Variance
Ch 14．Simple Linear Regression
Ch 15．Multiple Regression
Ch 16．Regression Analysis：Model Building
Ch 17．Time Series Analysis and Forecasting
Ch 18．Nonparametric Methods
Ch 19．Decision Analysis
Ch 20．Index Numbers
Ch 21．Statistical Methods for Quality Control
附錄：110－2 學年第 1 學期小考題，期中考題，期末考題。

叮嚀

A．平常就要唸書，做習題。
B．考過的題目，要主動訂正。
C．上課以「互相尊重」為最高原則並盡到「告知老師」的義務。
D．上課可小聲討論，上廁所安靜去回，不鼓勵飲食。（請一定要維護教室整潔）
E．四不一要：「上課不聊天，睡覺不趴著，手機不要滑，考試不作弊，要認真 」」

Anderson＇s Statistics for Business \＆Economics（14／E）

Chapter 10：
 Inference About Means and Proportions with Two Populations

上課時間地點：二 D56，商館 260206
授課教師：吳漢銘（國立政治大學統計學系副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

Overview

1．Discuss the statistical inference \qquad and \qquad
for two population means（three situations：population standard deviations known， unknown；match samples）and the two population proportions．

2．Examples：
（a）Develop an interval estimate of the difference between the mean starting salary for a population of men and the mean starting salary for a population of women．
（b）Conduct a hypothesis test to determine whether any difference is present be－ tween the proportion of defective parts in a population of parts produced by supplier A and the proportion of defective parts in a population of parts pro－ duced by supplier B ．

10．1 Inferences About the Difference Between Two Population Means：σ_{1} and σ_{2} Known

1. \qquad denote the mean of population 1 （2），we will focus on inferences about the difference between the means： \qquad ．

2．A simple random sample of \qquad units from population 1 （2）．The two samples，taken separately and independently，are referred to as \qquad simple random samples．

3．Assume the two population standard deviations， \qquad ，can be assumed
\qquad to collecting the samples．

4．Question：how to compute a \qquad and develop an \qquad of the difference between the two population means when σ_{1} and σ_{2} are known．

Interval Estimation of $\mu_{1}-\mu_{2}$

1．Example Greystone Department Stores，Inc．，operates two stores in Buffalo， New York：One is in the inner city and the other is in a suburban shopping center． The regional manager noticed that products that sell well in one store do not always sell well in the other．The manager believes this situation may be attributable to differences in customer demographics at the two locations．Customers may differ in age，education，income，and so on．（對觀察事物提出問題）

2．Suppose the manager asks us to investigate the difference between the of the customers who shop at the two stores．（針對問題收集資料）

3．Let us define population 1 as all customers who shop at the and population 2 as all customers who shop at the \qquad ．
（a）：mean of population 1 （i．e．，the mean age of all customers who shop at the inner－city store）
（b） \qquad ： 5 mean of population 2 （i．e．，the mean age of all customers who shop at the suburban store）

4．The difference between the two population means is \qquad ．To estimate $\mu_{1}-\mu_{2}$ ，we will select a simple random sample of \qquad customers from popu－ lation 1 and a simple random sample of \qquad customers from population 2.

5．We then compute the two sample means．
（a） \qquad ：sample mean age for the simple random sample of n_{1} inner－city cus－ tomers
（b） \qquad ：sample mean age for the simple random sample of n_{2} suburban cus－ tomers

6．The point estimator of the difference between the two \qquad is the difference between the two \qquad ．

7．Point Estimator of the Difference Between Two Population Means

8．（Figure 10．1）the process used to estimate the difference between two population means based on two independent simple random samples．

FIGURE 10．1 Estimating the Difference Between Two Population Means

9．The point estimator $\bar{x}_{1}-\bar{x}_{2}$ has a standard error that describes the \qquad in the sampling distribution of the estimator．

10．Standard Error of $\bar{x}_{1}-\bar{x}_{2}$ With two independent simple random samples，the standard error of $\bar{x}_{1}-\bar{x}_{2}$ is as follows：
（証明如下：）$\left(\operatorname{Hint}: \operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)\right)$ ．

11．If both populations have a \qquad distribution，or if the sample sizes are large enough that the \qquad enables us to conclude that the sampling distributions of \bar{x}_{1} and \bar{x}_{2} can be approximated by a normal distribution， the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ will have a \qquad distribution with mean given by \qquad ．（Denoted by \qquad
12．In general，an interval estimate is given by a point estimate \pm a margin of error．In the case of estimation of the difference between two population means，an interval estimate will take the following form：

13．With the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ having a normal distribution，we can write the margin of error as follows：

$$
\begin{equation*}
\text { Margin of error }= \tag{10.3}
\end{equation*}
$$

14．Interval Estimate of the Difference Between Two Population Means：σ_{1} and σ_{2} Known
where $1-\alpha$ is the confidence coefficient．

[^0]Example Greystone example．Based on data from previous customer demo－ graphic studies，the two population standard deviations are known with $\sigma_{1}=9$ years and $\sigma_{2}=10$ years．The data collected from the two independent simple random samples of Greystone customers provided the following results．

	Inner City Store	
Suburban Store		
Sample Size	$n_{1}=36$	$n_{2}=49$
Sample Mean	$\bar{x}_{1}=40$ years	$\bar{x}_{2}=35$ years

Find the margin of error and the 95% confidence interval estimate of the dif－ ference between the two population means．
sol：

Hypothesis Tests About $\mu_{1}-\mu_{2}$

1．Let us consider hypothesis tests about the difference between two population means． Using \qquad to denote the hypothesized difference between μ_{1} and μ_{2} ，the three forms for a hypothesis test are as follows：

Left－tailed test	Right－tailed test	Two－tailed test
$H_{0}:$	$H_{0}:$	
$H_{a}:$	$H_{0}:$	

2．In many applications， \qquad ．Using the two－tailed test as an example，when $D_{0}=0$ the null hypothesis is $H_{0}: \mu_{1}-\mu_{2}=0$.

3．In this case，the null hypothesis is that μ_{1} and μ_{2} are equal．Rejection of H_{0} leads to the conclusion that $H_{a}: \mu_{1}-\mu_{2} \neq 0$ is true；that is，μ_{1} and μ_{2} are not equal．

4．The general steps for conducting hypothesis tests：choose a \qquad ， compute the value of the \qquad ，and find the \qquad to \qquad whether the null hypothesis should be rejected．

5．With two independent simple random samples，we showed that the point estimator $\bar{x}_{1}-\bar{x}_{2}$ has a standard error $\sigma_{\bar{x}_{1}-\bar{x}_{2}}$ given by expression（10．2）and，when the sample sizes are large enough，the distribution of $\bar{x}_{1}-\bar{x}_{2}$ can be described by a \qquad distribution．

6．Test Statistic for Hypothesis Tests About $\mu_{1}-\mu_{2}: \sigma_{1}$ and σ_{2} Known

7．We demonstrated a two－tailed hypothesis test about the difference between two population means．Lower tail and upper tail tests can also be considered．These tests use the \qquad as given in equation（10．5）．The procedure for computing the p－value and the rejection rules for these one－tailed tests are the same as those for hypothesis tests involving a single population mean and single population proportion．

Question ．．．
As part of a study to evaluate differences in education quality between two train－ ing centers，a standardized examination is given to individuals who are trained at the centers．The difference between the mean examination scores is used to assess quality differences between the centers．The population means for the two centers are as follows．μ_{1} is the mean examination score for the population of individuals trained at center A, μ_{2} is the mean examination score for the population of individ－ uals trained at center B ．We begin with the tentative assumption that no difference exists between the training quality provided at the two centers．The standardized examination given previously in a variety of settings always resulted in an exami－ nation score standard deviation near 10 points．Thus，we will use this information to assume that the population standard deviations are known with $\sigma_{1}=10$ and $\sigma_{2}=10$ ．An $\alpha=0.05$ level of significance is specified for the study．Independent simple random samples of $n_{1}=30$ individuals from training center A and $n_{2}=40$ individuals from training center B are taken．The respective sample means are $\bar{x}_{1}=82$ and $\bar{x}_{2}=78$ ．Do these data suggest a significant difference between the population means at the two training centers？State the null and alternative hy－ potheses for this two－tailed test，compute the test statistic，and state the decision rules based on the p－value approach and the critical value approach and make the decision．
sol：

Practical Advice

1．In most applications of the interval estimation and hypothesis testing procedures presented in this section，random samples with \qquad and \qquad are adequate．

2．In cases where either or both sample sizes are less than 30，the \qquad of the populations become important considerations．

3．In general，with smaller sample sizes，it is more important for the analyst to be satisfied that it is reasonable to assume that the distributions of the two populations are at least \qquad ．

10．2 Inferences About The Difference Between Two Population Means：σ_{1} and σ_{2} Unknown

1．Extend the discussion of inferences about the difference between two population means to the case when the two population standard deviations， \qquad and
\qquad ，are \qquad ．

2．In this case，we will use the sample standard deviations， \qquad and \qquad ，to estimate the unknown population standard deviations．

3．When we use the sample standard deviations，the interval estimation and hypothesis testing procedures will be based on the \qquad rather than the standard normal distribution．

Interval Estimation of $\mu_{1}-\mu_{2}$

1．Let us develop the margin of error and an interval estimate of the difference between these two population means．（Recall）The interval estimate for the case when the
population standard deviations，σ_{1} and σ_{2} ，are known．

2．With σ_{1} and σ_{2} unknown，we will use the sample standard deviations s_{1} and s_{2} to estimate \qquad and replace $z_{\alpha / 2}$ with \qquad ．

3．Interval Estimate of the Difference Between Two Population Means：σ_{1} and σ_{2} Unknown

where $1-\alpha$ is the confidence coefficient．

4．In this expression，the use of the t distribution is an \qquad ，but it provides excellent results and is relatively easy to use．The only difficulty that we en－ counter in using expression（10．6）is determining the appropriate for $t_{\alpha / 2}$ ．

5．Statistical software packages compute the appropriate degrees of freedom automat－ ically．The formula used is as follows：
Degrees of Freedom：t Distribution With Two Independent Random Samples

$$
\begin{equation*}
d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}} \tag{10.7}
\end{equation*}
$$

Question （p490）
（Clearwater National Bank example）Clearwater National Bank is conducting a study designed to identify differences between checking account practices by cus－ tomers at two of its branch banks．A simple random sample of 28 checking accounts is selected from the Cherry Grove Branch and an in dependent simple random sam－ ple of 22 checking accounts is selected from the Beechmont Branch．The current checking account balance is recorded for each of the checking accounts．A summary of the account balances follows：

Chapter 10：Inference About Means and Proportions with Two Populations Page 10／22

	Cherry Grove	Beechmont
Sample Size	$n_{1}=28$	$n_{2}=22$
Sample Mean	$\bar{x}_{1}=\$ 1025$	$\bar{x}_{2}=\$ 910$
Sample Standard Deviation	$s_{1}=\$ 150$	$s_{2}=\$ 125$

Clearwater National Bank would like to estimate the difference between the mean checking account balance maintained by the population of Cherry Grove customers and the population of Beechmont customers．Compute a 95% confidence interval estimate of the difference between the population mean checking account balances at the two branch banks．
sol：

Hypothesis Tests About $\mu_{1}-\mu_{2}$
1．（Recall）Letting D_{0} denote the hypothesized difference between μ_{1} and μ_{2} ，the test statistic used for the case where σ_{1} and σ_{2} are known is as follows．

The test statistic，z ，follows the standard normal distribution．
2．When σ_{1} and σ_{2} are unknown，we use s_{1} as an estimator of σ_{1} and s_{2} as an estimator of σ_{2} ．Substituting these sample standard deviations for σ_{1} and σ_{2} provides the following test statistic when σ_{1} and σ_{2} are unknown．

3．Test Statistic for Hypothesis Tests About $\mu_{1}-\mu_{2}: \sigma_{1}$ and σ_{2} Unknown

The degrees of freedom $\overline{\text { for } t}$ are given by equation（10．7）．

Question ．．．
Consider a new computer software package developed to help systems analysts re－ duce the time required to design，develop，and implement an information system． To evaluate the benefits of the new software package，a random sample of 24 sys－ tems analysts is selected．Each analyst is given specifications for a hypothetical information system．Then 12 of the analysts are instructed to produce the infor－ mation system by using current technology．The other 12 analysts are trained in the use of the new software package and then instructed to use it to produce the information system．This study involves two populations：a population of systems analysts using the current technology and a population of systems analysts using the new software package．In terms of the time required to complete the informa－ tion system design project，the population means are as follows．μ_{1} is the mean project completion time for systems analysts using the current technology and μ_{2} is the mean project completion time for systems analysts using the new software package The researcher in charge of the new software evaluation project hopes to show that the new software package will provide a shorter mean project completion time．Thus，the researcher is looking for evidence to conclude that μ_{2} is less than μ_{1} ；in this case，the difference between the two population means，$\mu_{1}-\mu_{2}$ ，will be greater than zero．Suppose that the 24 analysts complete the study with the results shown in Table 10．1．

Chapter 10：Inference About Means and Proportions with Two Populations Page 12／22

Let the level of significance be $\alpha=0.05$ ．State the null and the alternative hypoth－ esis，the test statistic，p－value，the rejection rule，make a decision and conclusion． sol：

TABLE 10．2	Output for the Hypothesis Test on the Difference Between the Current and New Software Technology	
	Current	New
	325	286
Mean	1600	1936
Variance	12	12
Observations	0	
	21	
Hypothesized Mean Difference	2.272	
Degrees of Freedom	0.017	
Test Statistic	1.717	
One－Tail p－value		

（Software Output）

Practical Advice

1．The interval estimation and hypothesis testing procedures presented in this section are \qquad and can be used with \qquad sample sizes．

2．In most applications，equal or nearly equal sample sizes such that the total sample size \qquad can be expected to provide very good results even if the populations are not normal．

3．Larger sample sizes are recommended if the distributions of the populations are
\qquad or contain \qquad ．

4．Smaller sample sizes should only be used if the analyst is satisfied that the distri－ butions of the populations are at least \qquad ．

Notes + Comments

1．How to make inferences about the difference between two population means when σ_{1} and σ_{2} are equal and unknown（ \qquad ）？

2．Based on above assumption，the two sample standard deviations are combined to provide the following pooled sample variance：

3．The t test statistic becomes
and has \qquad degrees of freedom．At this point，the computation of the p－value and the interpretation of the sample results are identical to the procedures discussed earlier in this section．

4．A difficulty with this procedure is that the assumption that the two population standard deviations are equal is usually difficult to \qquad ．Unequal population standard deviations are frequently encountered．

5．Using the pooled procedure may not provide satisfactory results，especially if the sample sizes n_{1} and n_{2} are \qquad ．

6．The t procedure that we presented in this section does not require the assumption of equal population standard deviations and can be applied whether the popula－ tion standard deviations are equal or not．It is a more general procedure and is recommended for most applications．

10．3 Inferences About The Difference Between Two Population Means：Matched Samples

1．Example Matched．
（a）Suppose employees at a manufacturing company can use two different methods to perform a production task．To maximize production output，the company wants to identify the method with the smaller population mean completion time．
（b）Let \qquad denote the population mean completion time for production method 1 and \qquad denote the population mean completion time for production method 2.
（c）With no preliminary indication of the preferred production method，we begin by tentatively assuming that the two production methods have the same popu－ lation mean completion time．Thus，the null hypothesis is \qquad ．
（d）If this hypothesis is rejected，we can conclude that the population mean com－ pletion times differ．In this case，the method providing the smaller mean completion time would be recommended．
（e）The null and alternative hypotheses are written as follows．

2．In choosing the sampling procedure that will be used to collect production time data and test the hypotheses，we consider two alternative designs．One is based on and the other is based on \qquad ．
（a）Independent sample design：A simple random sample of workers is selected and each worker in the sample uses method 1．A second independent simple random sample of workers is selected and each worker in this sample uses method 2．The test of the difference between population means is based on the procedures in Section 10．2．
（b）Matched sample design：One simple random sample of workers is selected． Each worker first uses one method and then uses the other method．The order of the two methods is assigned randomly to the workers，with some workers performing method 1 first and others performing method 2 first．Each worker provides \qquad ，one value for method 1 and another value for method 2 ．

3．In the matched sample design the two production methods are tested under sim－ ilar conditions（i．e．，with the same workers）；hence this design often leads to a than the independent sample design．The primary rea－ son is that in a matched sample design， \qquad is elimi－ nated because the same workers are used for both production methods．

4．Assuming the analysis of a matched sample design is the method used to test the difference between population means for the two production methods．The key
to the analysis of the matched sample design is to realize that we consider only
\qquad ．

5．Therefore，we have six data values $(0.6,-0.2,0.5,0.3,0.0$ ，and 0.6$)$ that will be used to analyze the difference between population means of the two production methods．

6．Let \qquad is the mean of the difference in values for the population of workers． With this notation，the null and alternative hypotheses are rewritten as follows．

7．Assume the population of \qquad has a \qquad distribution．This assumption is necessary so that we may use the \qquad for hypothesis testing and interval estimation procedures．Based on this assumption，the following test statistic has a t distribution with \qquad degrees of freedom．

8．Test Statistic for Hypothesis Tests Involving Matched Samples
where
and

Question \qquad
（Table 10．3）（Matched Example）．A random sample of six workers is used．The data on completion times for the six workers are given in Table 10．3．Note that each worker provides a pair of data values，one for each production method．Also note that the last column contains the difference in completion times d_{i} for each worker in the sample．Assume that the population of differences has a normal distribution． Test the hypotheses $H_{0}: \mu_{d}=0$ and $H_{a}: \mu_{d} \neq 0$ ，using $\alpha=0.05$ ．Compute the test statistic，the p－value and draw a conclusion．Compute the 95% confidence interval for the difference between the population means of the two production methods．If H_{0} is rejected，we can conclude that the population mean completion times differ．

Chapter 10：Inference About Means and Proportions with Two Populations Page 17／22

TABLE 10．3 Task Completion Times for a Matched Sample Design

Worker	Completion Time for Method 1 （minutes）	Completion Time for Method 2 （minutes）	Difference in Completion
1	6.0	5.4	Times $\left(d_{i}\right)$
2	5.0	5.2	.6
3	7.0	6.5	-.2
4	6.2	5.9	.5
5	6.0	6.0	.3
6	6.4	5.8	.0
			.6

sol：

Area in Upper Tail	0.20	0.10	0.05	0.025	0.01	0.005
t－Value（5 df）	0.920	1.476	2.015	2.571	3.365	4.032

10．4 Inferences About The Difference Between Two Population Proportions

1．Letting \qquad denote the proportion for population 1 and \qquad denote the proportion for population 2.

2．Consider inferences about the difference between the two population proportions：
\qquad ．

3．To make an inference about this difference，we will select two independent random samples consisting of n_{1} units from population 1 and n_{2} units from population 2.

Interval Estimation of $p_{1}-p_{2}$

1．Example Tax Preparation Firm
A tax preparation firm is interested in comparing the quality of work at two of its regional offices．By randomly selecting samples of tax returns prepared at each office and verifying the sample returns＇accuracy，the firm will be able to estimate the proportion of erroneous returns prepared at each office．Of particular interest is the difference between these proportions．
（a）p_{1} ：proportion of erroneous returns for population 1 （office 1 ）
（b）p_{2} ：proportion of erroneous returns for population 2 （office 2）
（c） \qquad ：sample proportion for a simple random sample from population 1
（d） \qquad ：sample proportion for a simple random sample from population 2

2．Point Estimator of the Difference Between Two Population Proportions

3．Thus，the point estimator of the difference between two \qquad proportions is the difference between the \qquad proportions of two independent simple random samples．

4．As with other point estimators，the point estimator $\bar{p}_{1}-\bar{p}_{2}$ has a sampling distribu－ tion that reflects the possible values of $p_{1}-p_{2}$ if we repeatedly took two independent
random samples．The mean of this sampling distribution is \qquad and the standard error of $\bar{p}_{1}-\bar{p}_{2}$ is：

Standard Error of $\bar{p}_{1}-\bar{p}_{2}$

5．If the sample sizes are large enough that \qquad ， \qquad
\qquad ，and
\qquad are all greater than or equal to \qquad ，the sampling distribution of $\bar{p}_{1}-\bar{p}_{2}$ can be approximated by a \qquad distribution．

6．With the sampling distribution of $\bar{p}_{1}-\bar{p}_{2}$ approximated by a normal distribution， we would like to use \qquad as the margin of error．

7．However，$\sigma_{\bar{p}_{1}-\bar{p}_{2}}$ given by equation（10．11）cannot be used directly because the two population proportions，p_{1} and p_{2} ，are unknown．Using the sample proportion \bar{p}_{1} to estimate \bar{p}_{1} and the sample proportion \bar{p}_{2} to estimate p_{2} ，the margin of error is：

$$
\begin{equation*}
\text { Margin of error }= \tag{10.12}
\end{equation*}
$$

8．Interval Estimate of the Difference Between Two Population Proportions

where $1-\alpha$ is the confidence coefficient．

Question

（Tax Preparation Example）We find that independent simple random samples from the two offices provide the following information．

Office	1	2
n_{i}	250	300
Number of returns with errors	35	27

Find a margin of error and interval estimate of the difference between the two population proportions．and 90% confidence interval．
sol：

Hypothesis Tests About $p_{1}-p_{2}$

1．Let us now consider hypothesis tests about no difference between the proportions of two populations．In this case，the three forms for a hypothesis test are as follows：

$$
\begin{array}{rrr}
H_{0}: p_{1}-p_{2} \geq 0, & H_{0}: p_{1}-p_{2} \leq 0, & H_{0}: p_{1}-p_{2}=0 \\
H_{a}: p_{1}-p_{2}<0 & H_{a}: p_{1}-p_{2}>0 & H_{a}: p_{1}-p_{2} \neq 0
\end{array}
$$

2．When we assume \qquad ，we have $p_{1}-p_{2}=0$ ，which is the same as saying that the population proportions are equal，$p_{1}=p_{2}$ ．

3．Under the assumption H_{0} is true as an equality，the population proportions are equal and \qquad ．In this case，$\sigma_{\bar{p}_{1}-\bar{p}_{2}}$ becomes Standard Error of $\bar{p}_{1}-\bar{p}_{2}$ when $p_{1}=p_{2}=p$

$$
\begin{equation*}
\sigma_{\bar{p}_{1}-\bar{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}= \tag{10.14}
\end{equation*}
$$

4．With p unknown，we pool，or combine，the point estimators from the two samples （ \bar{p}_{1} and \bar{p}_{2} ）to obtain a single point estimator of p as follows：
Pooled Estimator of p When $p_{1}=p_{2}=p$

This pooled estimator of p is a weighted average of \bar{p}_{1} and \bar{p}_{2} ．

Chapter 10：Inference About Means and Proportions with Two Populations Page 21／22

5．Substituting \bar{p} for p in equation（10．14），we obtain an estimate of the standard error of $\bar{p}_{1}-\bar{p}_{2}$ ．This estimate of the standard error is used in the test statistic．

6．The general form of the test statistic for hypothesis tests about the difference be－ tween two population proportions is the point estimator divided by the estimate of $\sigma_{\bar{p}_{1}-\bar{p}_{2}}$.

7．Test Statistic for Hypothesis Tests About $p_{1}-p_{2}$

This test statistic applies to large sample situations where $n_{1} p_{1}, n_{1}\left(1-p_{1}\right), n_{2} p_{2}$ ， and $n_{2}\left(1-p_{2}\right)$ are all greater than or equal to 5 ．
Question
（Tax Preparation Firm Example）Assume that the firm wants to use a hypoth－ esis test to determine whether the error proportions differ between the two offices． A two－tailed test is required．Use $\alpha=0.10$ as the level of significance．State the null and alternative hypotheses．Compute the test statistic，and the p－value for this two－tailed test．State the decison rule and draw a conclusion．
sol：

Chapter 10：Inference About Means and Proportions with Two Populations Page 22／22

© EXERCISES

$10.1: 1,2,4,6$
$10.2: 9,10,13,14,15$
$10.3: 19,23,24$
$10.4: 28,29,31,34$
SUP ：38，39， 44
＂少花點時間去取悅別人，多花些時間來經營自己。＂
＂Spend a little more time trying to make something of yourself and a little less time trying to impress people．＂
—早餐俱樂部（Breakfast Club，1985）

Anderson＇s Statistics for Business \＆Economics（14／E）

上課時間地點：二 D56，商館 260206
授課教師：吳漢銘（國立政治大學統計學系副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

Overview

1．Examine methods of statistical inference involving \qquad ．

2．Example Production Process of Filling Containers
（a）Consider the production process of filling containers with a liquid detergent product．The filling mechanism for the process is adjusted so that the \qquad
\qquad is 450 grams per container．
（b）Although a mean of 450 grams is desired，the \qquad of the filling weights is also critical．That is，even with the filling mechanism properly adjusted for the mean of 450 grams，we cannot expect every container to have exactly 450 grams．
（c）By selecting a sample of containers，we can compute a \qquad for the number of grams placed in a container．This value will serve as an
\qquad of the variance for the population of containers being filled by the production process．
（d）If the sample variance is modest，the production process will be continued． However，if the sample variance is excessive， \qquad and may be occurring even though the mean is correct at 450 grams．
（e）In this case，the filling mechanism will be readjusted in an attempt to \qquad the filling variance for the containers．

3．In the first section we consider inferences about the variance of a \qquad popu－ lation．Subsequently，we will discuss procedures that can be used to make inferences about the variances of \qquad populations．

11．1 Inferences About a Population Variance

1．The sample variance

$$
\begin{equation*}
s^{2}= \tag{11.1}
\end{equation*}
$$

is the point estimator of the population variance σ^{2} ．In using the sample variance as a basis for making inferences about a population variance，the sampling distribution of the quantity \qquad is helpful．

2．Sampling Distribution of $(n-1) s^{2} / \sigma^{2}$
Whenever a simple random sample of size n is selected from a \qquad popu－ lation，the sampling distribution of
is a \qquad distribution with \qquad degrees of freedom（denoted by
\qquad or \qquad ）．

3．補充說明：
（a）Chi－squared distribution：https：／／en．wikipedia．org／wiki／Chi－squared＿ distribution
（b）Theorem：$X_{1}, X_{2}, \cdots, X_{n}$ are observations of a random sample of size n from the normal distribution $N\left(\mu, \sigma^{2}\right) . \bar{X}$ is the sample mean and S^{2} is the sample variance．Then
i． \bar{X} and S^{2} are independent．
ii．$\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$
（証明過程）Sampling Distribution of Sample Variance：https：／／online．
stat．psu．edu／stat414／lesson／26／26．3
4．（Figure 11．1）shows some possible forms of the sampling distribution of $(n-1) s^{2} / \sigma^{2}$ ． Because the sampling distribution of $(n-1) s^{2} / \sigma^{2}$ is known to have a chi－square distribution whenever a simple random sample of size n is selected from a normal population，we can use the chi－square distribution to develop \qquad and conduct \qquad about a population variance．

Interval Estimation

1．Suppose that we are interested in estimating the population variance for the produc－ tion filling process．A sample of \qquad containers is taken，and the sample variance for the filling quantities is found to be \qquad ．However，we know we cannot expect the variance of a sample of 20 containers to provide the
\qquad of the variance for the population of containers filled by the pro－ duction process．Hence，our interest will be in developing an interval estimate for the population variance．

2．（Figure 11．2）We will use the notation \qquad a to denote the value for the chi－ square distribution that provides an area or probability of \qquad of the χ_{α}^{2} value．
（a）the chi－square distribution with 19 degrees of freedom is shown with \qquad indicating that 2.5% of the chi－square values are to the right of 32.852 ，and
（b） \qquad indicating that 97.5% of the chi－square values are to the right of 8.907 ．

FIGURE 11．2 A Chi－Square Distribution with 19 Degrees of Freedom

3．（Table 11．1）Tables of areas or probabilities are readily available for the chi－square distribution．Table 3 of Appendix B provides a more extensive table of chi－square values．

TABLE 11.1 Selected Values from the Chi-Square Distribution Table*

Degrees of Freedom $.99 \quad .975$ 1
2 3
4
5 5
6
7
8
9
10
11
12
12
13
14
15
16
16
17
18
19
20
20
21
22

4．From the graph in Figure 11.2 we see that 0.95 ，or 95% ，of the chi－square values are between and \qquad That is，there is a 0.95 probability of obtaining a χ^{2} value such that

5．We stated in expression（11．2）that $(n-1) s^{2} / \sigma^{2}$ follows a chi－square distribution； therefore we can substitute $(n-1) s^{2} / \sigma^{2}$ for χ^{2} and write

6．In effect，expression（11．3）provides an interval estimate in that ．95，or 95% ，of for $(n-1) s^{2} / \sigma^{2}$ will be in the interval $\chi_{0.975}^{2}$ to $\chi_{0.025}^{2}$ ．

7．We now need to do some algebraic manipulations with expression（11．3）to develop an interval estimate for the population variance σ^{2} ．Working with the leftmost inequality in expression（11．3），we have

$$
\begin{equation*}
\chi_{0.975}^{2} \leq \frac{(n-1) s^{2}}{\sigma^{2}} \Rightarrow \sigma^{2} \chi_{0.975}^{2} \leq(n-1) s^{2} \quad \Rightarrow \tag{11.4}
\end{equation*}
$$

8．Performing similar algebraic manipulations with the rightmost inequality in expres－ sion（11．3）gives

9．The results of expressions（11．4）and（11．5）can be combined to provide a 95% confidence interval estimate for the population variance

10．Example Production Process of Filling Containers Recall that the sample of 20 containers provided a sample variance of $s^{2}=2.016$ ．With a sample size of 20，we have 19 degrees of freedom and $\chi_{0.975}^{2}=8.907$ and $\chi_{0.025}^{2}=32.852$ ．Using these values in expression（11．6）provides the following interval estimate for the population variance of filling quantities：

$$
\text { or } \quad 1.166 \leq \sigma^{2} \leq 4.300
$$

11．Taking the square root of these values provides the following 95% confidence interval for the population standard deviation．

12．Thus，we illustrated the process of using the \qquad to es－ tablish \qquad of a population variance and a population standard deviation．

13．$(1-\alpha) \%$ Confidence Interval Estimate of a Population Variance
where the χ^{2} values are based on a chi－square distribution with $n-1$ degrees of freedom and where $(1-\alpha)$ is the confidence coefficient．

Hypothesis Testing

1．Using \qquad to denote the hypothesized value for the population variance，the three forms for a hypothesis test about a population variance are as follows：

$$
\begin{array}{lll}
H_{0}: \sigma^{2} \geq \sigma_{0}^{2}, & H_{0}: \sigma^{2} \leq \sigma_{0}^{2}, & H_{0}: \sigma^{2}=\sigma_{0}^{2} \\
H_{0}: \sigma^{2}<\sigma_{0}^{2}, & H_{0}: \sigma^{2}>\sigma_{0}^{2}, & H_{0}: \sigma^{2} \neq \sigma_{0}^{2}
\end{array}
$$

2．These three forms are similar to the three forms used to conduct one－tailed and two－tailed hypothesis tests about \qquad ．

3．The procedure for conducting a hypothesis test about a population variance uses the hypothesized value for the population variance σ_{0}^{2} and the sample variance s^{2} to compute the value of a \qquad test statistic．

4．Test Statistic for Hypothesis Tests About a Population Variance Assuming that the population has a normal distribution，the test statistic is：

$$
\begin{equation*}
\chi^{2}= \tag{11.8}
\end{equation*}
$$

where χ^{2} has a chi－square distribution with $n-1$ degrees of freedom．

5．After computing the value of the χ^{2} test statistic，either the \qquad approach or the \qquad approach，may be used to determine whether the null hypothesis can be rejected．

6．Like the t distribution table，the chi－square distribution table does not contain sufficient detail to enable us to determine the p－value exactly．However，we can use the chi－square distribution table to obtain \qquad ．

7．（Table 11．2）
TABLE 11．2 Summary of Hypothesis Tests About a Population Variance

	Lower Tail Test	Upper Tail Test	Two－Tailed Test
Hypotheses	$\begin{aligned} & H_{0}: \sigma^{2} \geq \sigma_{0}^{2} \\ & H_{\mathrm{a}}: \sigma^{2}<\sigma_{0}^{2} \end{aligned}$	$\begin{aligned} & H_{0}: \sigma^{2} \leq \sigma_{0}^{2} \\ & H_{\mathrm{a}}: \sigma^{2}>\sigma_{0}^{2} \end{aligned}$	$\begin{aligned} & H_{0}: \sigma^{2}=\sigma_{0}^{2} \\ & H_{a}: \sigma^{2} \neq \sigma_{0}^{2} \end{aligned}$
Test Statistic	$\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$	$\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$	$\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$
Rejection Rule： p－value Approach	Reject H_{0} if p－value $\leq \alpha$	Reject H_{0} if p－value $\leq \alpha$	Reject H_{0} if p －value $\leq \alpha$
Rejection Rule： Critical Value Approach	Reject H_{0} if $\chi^{2} \leq \chi_{(1-\alpha)}^{2}$	Reject H_{0} if $\chi^{2} \geq \chi_{\alpha}^{2}$	Reject H_{0} if $\chi^{2} \leq \chi_{(1-\alpha / 2)}^{2}$ or if $\chi^{2} \geq \chi_{\alpha / 2}^{2}$

Question
（The St．Louis Metro Bus Example）The St．Louis Metro Bus Company wants to promote an image of reliability by encouraging its drivers to maintain consistent schedules．As a standard policy，the company would like arrival times at bus stops to have low variability．In terms of the variance of arrival times，the company standard specifies an arrival time variance of 4 or less when arrival times are measured in minutes．The following hypothesis test is formulated to help the company determine whether the arrival time population variance is excessive．

$$
H_{0}: \sigma^{2} \leq 4, \quad H_{a}: \sigma^{2}>4
$$

In tentatively assuming H_{0} is true，we are assuming that the population variance of arrival times is within the company guideline．We reject H_{0} if the sample evidence indicates that the population variance exceeds the guideline．In this case，follow－up steps should be taken to reduce the population variance．We conduct the hypothesis test using a level of significance of $\alpha=0.05$ ．Suppose that a random sample of 24 bus arrivals taken at a downtown intersection provides a sample variance of $s^{2}=4.9$ ． Assuming that the population distribution of arrival times is approximately normal． Conduct a hypothesis testing and draw a conclusion using p－value approach and the critical value approach，separately．
sol：

FIGURE 11．3 Chi－Square Distribution for the St．Louis Metro Bus Example

Question ．．
Conduct a two－tailed test about a population variance by considering a situation faced by a bureau of motor vehicles．Historically，the variance in test scores for individuals applying for driver＇s licenses has been $\sigma^{2}=100$ ．A new examination with new test questions has been developed．Administrators of the bureau of motor vehicles would like the variance in the test scores for the new examination to remain at the historical level．To evaluate the variance in the new examination test scores， the following two－tailed hypothesis test has been proposed．

$$
H_{0}: \sigma^{2}=100, \quad H_{a}: \sigma^{2} \neq 100
$$

Rejection of H_{0} will indicate that a change in the variance has occurred and suggest that some questions in the new examination may need revision to make the variance of the new test scores similar to the variance of the old test scores．A sample of 30 applicants for driver＇s licenses will be given the new version of the examination． We will use a level of significance $\alpha=0.05$ to conduct the hypothesis test．The sample of 30 examination scores provided a sample variance $s^{2}=162$ ．Conduct a hypothesis testing and draw a conclusion using p－value approach．
sol：

Area in Upper Tail	0.10	0.05	0.025	0.01
χ^{2} Value $(29 \mathrm{df})$	39.087	42.557	45.722	49.588

11．2 Inferences About Two Population Variances

1．In some statistical applications we may want to compare the variances in product quality resulting from two different production processes，the variances in assembly times for two assembly methods，or the variances in temperatures for two heating devices．

2．In making comparisons about the two population variances，we will be using data collected from \qquad ，one from population 1 and another from population 2．The two sample variances s_{1}^{2} and s_{2}^{2} will be the basis for making inferences about the two population variances σ_{1} and σ_{2} ．

3．Sampling Distribution of s_{1}^{2} / s_{2}^{2} When $\sigma_{1}^{2}=\sigma_{2}^{2}$
Whenever independent simple random samples of sizes n_{1} and n_{2} are selected from two \qquad populations with \qquad ，the sampling distribution of \qquad is an \qquad distribution with \qquad degrees of freedom for the numerator and \qquad degrees of freedom for the denominator；s_{1}^{2} is the sample variance for the random sample of n_{1} items from population 1 ，and s_{2}^{2} is the sample variance for the random sample of n_{2} items from population 2 ．

4．補充說明：The sampling distribution of ratio of variances is given by Prof．R． A．Fisher in 1924．According to Prof．R．A．Fisher，the ratio of two independent chi－square variates when divided by their respective degrees of freedom follows F－distribution as

$$
\begin{aligned}
& F=\frac{\chi_{\left(n_{1}-1\right)}^{2} /\left(n_{1}-1\right)}{\chi_{\left(n_{2}-1\right)}^{2} /\left(n_{2}-1\right)}, \quad \text { Since } \chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}, \text { therefore } \\
& F=\frac{\left(\left(n_{1}-1\right) s_{1}^{2} / \sigma_{1}^{2}\right) /\left(n_{1}-1\right)}{\left(\left(n_{2}-1\right) s_{2}^{2} / \sigma_{2}^{2}\right) /\left(n_{2}-1\right)}=\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}} \sim F_{\left(n_{1}-1, n_{2}-1\right)}
\end{aligned}
$$

If $\sigma_{1}^{2}=\sigma_{2}^{2}$ ，then

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}} \sim F_{\left(n_{1}-1, n_{2}-1\right)}
$$

Therefore，the sampling distribution of ratio of sample variances follows F－distribution with $\left(n_{1}-1, n_{2}-1\right)$ degrees of freedom．

5．（Figure 11．4）The F distribution is \qquad and the F values can
\qquad ．The shape of any particular F distribution depends on its numerator and denominator degrees of freedom．

FIGURE 11.4 F Distribution with 20 Degrees of Freedom for the Numerator and 20 Degrees of Freedom for the Denominator

6．（Table 11．3）We will use \qquad to denote the value of F that provides an area or probability of a in the \qquad of the distribution．For example，as noted in Figure 11．4，$F_{0.05}(20,20)=2.12$ denotes the upper tail area of 0.05 for an F distribution with 20 degrees of freedom for the numerator and 20 degrees of freedom for the denominator．

TABLE 11．3 Selected Values from the F Distribution Table＊

				Are prob		
0		F_{α}				
Denominator Degrees of Freedom	Area in Upper	Numerator Degrees of Freedom				
	Tail	10	15	20	25	30
10	． 10	2.32	2.24	2.20	2.17	2.16
	． 05	2.98	2.85	2.77	2.73	2.70
	． 025	3.72	3.52	3.42	3.35	3.31
	． 01	4.85	4.56	4.41	4.31	4.25
15	． 10	2.06	1.97	1.92	1.89	1.87
	． 05	2.54	2.40	2.33	2.28	2.25
	． 025	3.06	2.86	2.76	2.69	2.64
	． 01	3.80	3.52	3.37	3.28	3.21
20	． 10	1.94	1.84	1.79	1.76	1.74
	． 05	2.35	2.20	2.12	2.07	2.04
	． 025	2.77	2.57	2.46	2.40	2.35
	． 01	3.37	3.09	2.94	2.84	2.78
25	． 10	1.87	1.77	1.72	1.68	1.66
	$.05$	2.24	2.09	2.01	1.96	1.92
	． 025	2.61	2.41	2.30	2.23	2.18
	． 01	3.13	2.85	2.70	2.60	2.54
30	． 10	1.82	1.72	1.67	1.63	1.61
	． 05	2.16	2.01	1.93	1.88	1.84
	． 025	2.51	2.31	2.20	2.12	2.07
	． 01	2.98	2.70	2.55	2.45	2.39

＊Note：A more extensive table is provided as Table 4 of Appendix B．

7．Let us show how the F distribution can be used to conduct a hypothesis test about the variances of two populations．We begin with a test of the equality of two population variances．The hypotheses are stated as follows．

8．The procedure used to conduct the hypothesis test requires two independent random
samples，one from each population．The two sample variances are then computed． We refer to the population providing the larger sample variance as population 1. Thus，a sample size of \qquad and a sample variance of \qquad correspond to pop－ ulation 1 ，and a sample size of \qquad and a sample variance of \qquad correspond to population 2.

9．Test Statistic for Hypothesis Tests About Population Variances With $\sigma_{1}^{2}=\sigma_{2}^{2}$
Based on the assumption that both populations have a \qquad distribution， the ratio of sample variances provides the following F test statistic：

$$
\begin{equation*}
F= \tag{11.10}
\end{equation*}
$$

Denoting the population with the larger sample variance as population 1，the test statistic has an F distribution with $n_{1}-1$ degrees of freedom for the numerator and $n_{2}-1$ degrees of freedom for the denominator．

10．Because the F test statistic is constructed with the in the numerator，the value of the test statistic will be in the \qquad of the F distribution．

11．（Table 11．4）A summary of hypothesis tests about two population variances．

TABLE 11．4 Summary of Hypothesis Tests About Two Population Variances

Hypotheses	Upper Tail Test	Two－Tailed Test
	$\begin{aligned} & H_{0}: \sigma_{1}^{2} \leq \sigma_{2}^{2} \\ & H_{\mathrm{a}}: \sigma_{1}^{2}>\sigma_{2}^{2} \end{aligned}$	$\begin{aligned} & H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \\ & H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2} \end{aligned}$
		Note：Population 1 has the larger sample variance
Test Statistic	$F=\frac{s_{1}^{2}}{s_{2}^{2}}$	$F=\frac{s_{1}^{2}}{s_{2}^{2}}$
Rejection Rule： p－value	Reject H_{0} if p－value $\leq \alpha$	Reject H_{0} if p－value $\leq \alpha$
Rejection Rule： Critical Value Approach	$\begin{aligned} & \text { Reject } H_{0} \text { if } \\ & \qquad F F_{\alpha} \end{aligned}$	$\begin{aligned} & \text { Reject } H_{0} \text { if } \\ & \qquad F \geq F_{\alpha / 2} \end{aligned}$

Question （p539）
（Dullus County Schools Example）Dullus County Schools is renewing its school bus service contract for the coming year and must select one of two bus companies， the Milbank Company or the Gulf Park Company．We will use the variance of the arrival or pickup／delivery times as a primary measure of the quality of the bus service．Low variance values indicate the more consistent and higher－quality service． If the variances of arrival times associated with the two services are equal，Dullus School administrators will select the company offering the better financial terms． However，if the sample data on bus arrival times for the two companies indicate a significant difference between the variances，the administrators may want to give special consideration to the company with the better or lower variance service．The appropriate hypotheses follow．

$$
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}, \quad H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

If H_{0} can be rejected，the conclusion of unequal service quality is appropriate．We will use a level of significance of $\alpha=0.10$ to conduct the hypothesis test．A sample of 26 arrival times for the Milbank service provides a sample variance of 48 and a sample of 16 arrival times for the Gulf Park service provides a sample variance of 20．Because the Milbank sample provided the larger sample variance，we will denote Milbank as population 1．Use the p－value approach or the critical value approach to obtain the hypothesis testing conclusion．
sol：

Area in Upper Tail	0.10	0.05	0.025	0.01
F Value $\left(d f_{1}=25, d f_{2}=15\right)$	1.89	2.28	2.69	3.28

Question ．．
A one－tailed F test about the variances of two populations by considering a public opinion survey．Samples of 31 men and 41 women will be used to study attitudes about current political issues．The researcher conducting the study wants to test to see whether the sample data indicate that women show a greater variation in attitude on political issues than men．In the form of the one－tailed hypothesis test given previously，women will be denoted as population 1 and men will be denoted as population 2．The hypothesis test will be stated as follows．

$$
H_{0}: \sigma_{\text {women }}^{2} \leq \sigma_{\text {men }}^{2}, \quad H_{a}: \sigma_{\text {women }}^{2}>\sigma_{\text {men }}^{2}
$$

A rejection of H_{0} gives the researcher the statistical support necessary to conclude that women show a greater variation in attitude on political issues．The survey results provide a sample variance of $s_{1}^{2}=120$ for women and a sample variance of $s_{2}^{2}=80$ for men．Use a level of significance $\alpha=0.05$ to conduct the hypothesis test． sol：

© EXERCISES

$11.1: 2,3,5,9,10$
$11.2: 14,15,18,19$
SUP ：26， 29
＂永遠不要讓別人的冷漠，影響了你對這世界的熱情。＂
＂Never allow the indifference of others to affect your passion for this world．＂
—魔女宅急便（Kiki＇s Delivery Service，1989）

Anderson＇s Statistics for Business \＆Economics（14／E）

Chapter 12：
 Comparing Multiple Proportions，Test of Inde－ pendence and Goodness of Fit

上課時間地點：二 D56，商館 260206
授課教師：吳漢銘（國立政治大學統計學系副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

Overview

1．Consider cases in which the data are \qquad by using a test statistic based on the chi－square \qquad ）distribution．

2．In cases in which data are not naturally categorical，we define and consider the observation count in each category．These \qquad are versatile and expand hypothesis testing with the following applications．
（a）Testing the equality of population proportions for three or more populations． （Chi－Square \qquad ）
（b）Testing the independence of two categorical variables．（Chi－square \qquad ）
（c）Testing whether a probability distribution for a population follows a specific historical or theoretical probability distribution．（Chi－Square \qquad

12．1 Testing the Equality of Population Proportions for Three or More Populations

1．In this section，we show how the chi－square $\left(\chi^{2}\right)$ test statistic can be used to make statistical inferences about the \qquad for three or more populations．

2．Using the notation

$$
=\text { population proportion for population } i, i=1,2,3, \cdots, k .
$$

the hypotheses for the equality of population proportions for $k \geq 3$ populations are as follows：
H_{0} ： \qquad ，H_{a} ：Not all population proportions are equal
（a）If the \qquad and the chi－square test computations indicate H_{0} can－ not be rejected，we cannot detect a difference among the k population propor－ tions．
（b）However，if the sample data and the chi－square test computations indicate H_{0} can be rejected，we have the \qquad to conclude that not all k population proportions are equal；that is，one or more population proportions differ from the other population proportions．
（c）Further analyses can be done to conclude or proportions are significantly different from others．

3．Example Organizations such as J．D．Power and Associates use the proportion of owners likely to repurchase a particular automobile as an indication of customer loyalty for the automobile．An automobile with a greater proportion of owners likely to repurchase is concluded to have greater customer loyalty．
（a）Suppose that in a particular study we want to compare the customer loyalty for three automobiles：Chevrolet Impala，Ford Fusion，and Honda Accord．The current owners of each of the three automobiles form the three populations for the study．The three population proportions of interest are as follows：
$p_{1}=$ proportion likely to repurchase an Impala for the population of Chevrolet Impala owners．
$p_{2}=$ proportion likely to repurchase a Fusion for the population of Ford Fusion owners．
$p_{3}=$ proportion likely to repurchase an Accord for the population of Honda Accord owners．
（b）The hypotheses are stated as follows：
H_{0} ： \qquad ，H_{a} ：Not all population proportions are equal
（c）To conduct this hypothesis test we begin by taking a sample of owners from each of the three populations．Thus we will have a sample of Chevrolet Impala owners，a sample of Ford Fusion owners，and a sample of Honda Accord owners．
（d）Each sample provides \qquad indicating whether the respon－ dents are likely or not likely to repurchase the automobile．
（e）（Table 12．1）The data for samples of 125 Chevrolet Impala owners， 200 Ford Fusion owners，and 175 Honda Accord owners are summarized in Table 12．1．

TABLE 12．1 Sample Results of Likely to Repurchase for Three Populations of Automobile Owners（Observed Frequencies）

Automobile Owners					
Likely to	Yes	Chevrolet Impala	Ford Fusion	Honda Accord	Total
Repurchase	No	69	120	123	312
	Total	$\underline{56}$	$\underline{125}$	$\underline{200}$	$\underline{52}$

（f）This table has two rows for the responses Yes and No and three columns， one corresponding to each of the populations．The observed frequencies are summarized in the six cells of the table corresponding to each combination of the likely to repurchase responses and the three populations．
（g）The data in Table 12.1 are the observed frequencies for each of the six cells that represent the six combinations of the likely to \qquad response and the owner population．
（h）If we can determine the expected frequencies under the assumption H_{0} is true， we can use the chi－square test statistic to determine whether there is a signif－ icant difference between the \qquad and \qquad －
（i）If a \qquad exists between the observed and expected fre－ quencies，the hypothesis H_{0} can be \qquad and there is evidence that not all the population proportions are equal．

4．Expected frequencies for the six cells of the table are based on the following rationale．
（a）First，we assume that the \qquad of equal population proportions is true．
（b）Then we note that in the entire sample of 500 owners，a total of 312 owners indicated that they were likely to repurchase their current automobile．Thus， is the overall sample proportion of owners indicating they are likely to repurchase their current automobile．
（c）If $H_{0}: p_{1}=p_{2}=p_{3}$ is true， 0.624 would be the \qquad of the proportion responding likely to repurchase for each of the automobile owner populations．
（d）So if the assumption of H_{0} is true，we would expect 0.624 of the 125 Chevro－ let Impala owners，or \qquad owners to indicate they are likely to repurchase the Impala．Using the 0.624 overall sample proportion，we would expect \qquad of the 200 Ford Fusion owners and of the Honda Accord owners to respond that they are likely to repurchase their respective model of automobile．

5．Let us generalize the approach to computing expected frequencies by letting \qquad denote the expected frequency for the cell in \qquad and \qquad of the table．

6．Note that 312 is the total number of Yes responses（row 1 total）， 125 is the total sample size for Chevrolet Impala owners（column 1 total），and 500 is the total sample size．We can show
$e_{11}=\left(\frac{\text { Row } 1 \text { Total }}{\text { Total Sample Size }}\right)($ Column 1 Total $)=$

7．Expected Frequencies under the Assumption H_{0} is True

$$
\begin{equation*}
e_{i j}= \tag{12.1}
\end{equation*}
$$

8．（Table 12．2）Use equation（12．1）to verify the other expected frequencies：

> | TABLE 12.2 | $\begin{array}{l}\text { Expected Frequencies for Likely to Repurchase for Three } \\ \text { Populations of Automobile Owners if } H_{0} \text { is True }\end{array}$ |
| :--- | :--- |

	Automobile Owners				
Likely to	Yes	78	124.8	109.2	312
Repurchase	No	$\underline{47}$	$\frac{75.2}{200}$	$\frac{65.8}{175}$	$\frac{188}{500}$
	Total	$\overline{125}$			

9．Chi－Square Test Statistic
where

$$
\begin{array}{ll}
f_{i j}= & \text { for the cell in row } i \text { and column } j . \\
e_{i j}= & \text { for the cell in row } i \text { and column } j .
\end{array}
$$

under the assumption H_{0} is true．
10．In a chi－square test involving the equality of k population proportions，the above test statistic has a chi－square distribution with $k-1$ degrees of freedom（ \qquad provided the expected frequency is \qquad for each cell．

11．（補充說明）Why the test statistic for the chi－square test of homogeneity has a chi－square distribution？See
（a）The Multinomial Distribution and the Chi－Squared Test for Goodness of Fit： https：／／www．stat．berkeley．edu／～stark／SticiGui／Text／chiSquare．htm，
（b） 17.1 －Test For Homogeneity：
https：／／online．stat．psu．edu／stat415／lesson／17／17．1
12．（Table 12．3）Computation of the chi－square test statistic：

TABLE 12．3 Computation of the Chi－Square Test Statistic for the Test of Equal Population Proportions

Likely to Repurchase？	Automobile Owner	Observed Frequency $f_{i j}$	Expected Frequency $e_{i j}$	Difference $f_{i j}-e_{i j}$	Squared Difference $\left(f_{i j}-e_{i j}\right)^{2}$	Squared Difference Divided by Expected Frequency $\left(f_{i j}-e_{i j}\right)^{2} / e_{i j}$
Yes	Impala	69	78.0	－9．0	81.00	1.04
Yes	Fusion	120	124.8	－4．8	23.04	． 18
Yes	Accord	123	109.2	13.8	190.44	1.74
No	Impala	56	47.0	9.0	81.00	1.72
No	Fusion	80	75.2	4.8	23.04	． 31
No	Accord	52	65.8	－13．8	190.44	2.89
	Total	500	500			$\chi^{2}=\overline{7.89}$

13．（Table 12．4）In order to understand whether or not the value of the test statistic leads us to reject $H_{0}: p_{1}=p_{2}=p_{3}$ ，you will need to understand and refer to values of the chi－square distribution：

TABLE 12．4 Selected Values of the Chi－Square Distribution

Degrees of Freedom	Are				
	Area in Upper Tail				
	． 10	． 05	． 025	． 01	． 005
1	2.706	3.841	5.024	6.635	7.879
2	4.605	5.991	7.378	9.210	10.597
3	6.251	7.815	9.348	11.345	12.838
4	7.779	9.488	11.143	13.277	14.860
5	9.236	11.070	12.832	15.086	16.750
6	10.645	12.592	14.449	16.812	18.548
7	12.017	14.067	16.013	18.475	20.278
8	13.362	15.507	17.535	20.090	21.955
9	14.684	16.919	19.023	21.666	23.589
10	15.987	18.307	20.483	23.209	25.188
11	17.275	19.675	21.920	24.725	26.757
12	18.549	21.026	23.337	26.217	28.300
13	19.812	22.362	24.736	27.688	29.819
14	21.064	23.685	26.119	29.141	31.319
15	22.307	24.996	27.488	30.578	32.801

（a）Since the expected frequencies shown in Table 12.2 are based on the assumption that $H_{0}: p_{1}=p_{2}=p_{3}$ is true，observed frequencies，$f_{i j}$ ，that are in agree－
ment with expected frequencies，$e_{i j}$ ，provide
in equation（12．2）．If this is the case，the value of the chi－square test statistic will be relatively small and H_{0}
（b）On the other hand，if the differences between the observed and expected fre－ quencies are large，values of $\left(f_{i j}-e_{i j}\right)^{2}$ and the computed value of the test statistic will be \qquad ．In this case，the null hypothesis of equal popula－ tion proportions \qquad ．
（c）Thus a chi－square test for equal population proportions will always be an
\qquad with rejection of H_{0} occurring when the test statistic is in the upper tail of the chi－square distribution．（Reject H_{0} if \qquad
（d）We can use the upper tail area of the appropriate chi－square distribution and the \qquad approach to determine whether the null hypothesis can be rejected．

14．Example In the automobile brand loyalty study，the three owner populations indi－ cate that the appropriate chi－square distribution has \qquad degrees of freedom．

chi－square distribution table					
Area in Upper Tail	0.10	0.05	0.025	0.01	0.005
χ^{2} Value $(2 d f)$	4.605	5.991	7.378	9.210	10.597

（a）（The p－value approach）We see the upper tail area at \qquad is be－ tween \qquad and \qquad ．Thus，the corresponding upper tail area or
\qquad must be between \qquad and \qquad ．（Software：p－value $=0.0193$ ）
（b）With \qquad ，we reject H_{0} and conclude that the three population proportions are not all equal and thus there is a difference in brand loyalties among the Chevrolet Impala，Ford Fusion，and Honda Accord owners．
（c）（The critical value approach）With $\alpha=0.05$ and 2 degrees of freedom，the critical value for the chi－square test statistic is $\chi_{0.05,2}^{2}=5.991$ ．The upper tail rejection region becomes

Reject H_{0} if \qquad

With $7.89 \geq 5.991$ ，we reject H_{0} ．
（d）Thus，the p－value approach and the critical value approach provide the same hypothesis－testing conclusion．

15．A Chi－Square Test for the Equality of Population Proportions for $k \geq 3$ Populations
（1）State the null and alternative hypotheses
H_{0} ： \qquad ，H_{a} ：Not all population proportions are equal
（2）Set the level of significance \qquad ．Select a random sample from each of the populations and record the observed frequencies， \qquad ，in a table with 2 rows and k columns．Assume the null hypothesis is true and compute the expected frequencies， \qquad －
（3）If \qquad ，compute the test statistic：

$$
\chi^{2}=
$$

（4）Rejection rule（Desicion rule）：
i．p－value approach：Reject H_{0} if \qquad ．
ii．Critical value approach：Reject H_{0} if \qquad ．
（5）Make decision．
（6）Draw conclusion with respect to the problem．

A Multiple Comparison Procedure

1．Since the chi－square test indicated that not all population proportions are equal，it is reasonable for us to proceed by attempting to \qquad among the population proportions exist．

2．Begin by computing the three sample proportions as follows：

Brand Loyalty	Sample Proportions
Chevrolet Impala	$p_{1}=69 / 125=0.5520$
Ford Fusion	$p_{2}=120 / 200=0.6000$
Honda Accord	$p_{3}=123 / 175=0.7029$

3．For this we will rely on a \qquad procedure that can be used to conduct statistical tests between all pairs of population proportions．In the follow－ ing，we discuss a multiple comparison procedure known as the \qquad ．

4．We begin by computing the \qquad between sample proportions for each pair of populations in the study：
－Chevrolet Impala and Ford Fusion：

$$
=|0.5520-0.6000|=0.0480
$$

－Chevrolet Impala and Honda Accord：

$$
=|0.5520-0.7029|=0.1509
$$

－Ford Fusion and Honda Accord：

$$
=|0.6000-0.7029|=0.1029
$$

5．In a second step，we select a \qquad and compute the correspond－ ing \qquad for each pairwise comparison using the following expression．

6．Critical Values for the Marascuilo Pairwise Comparison Procedure for K Population Proportions：

For each pairwise comparison compute a critical value as follows：

$$
\begin{equation*}
C V_{i j}= \tag{12.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \chi_{\alpha}^{2}=\text { chi-square with a level of significance a and } k-1 \text { degrees of freedom } \\
& \bar{p}_{i} \text { and } \bar{p}_{j}=\text { sample proportions for populations } i \text { and } j \\
& n_{i} \text { and } n_{j}=\text { sample sizes for populations } i \text { and } j
\end{aligned}
$$

7．Using the chi－square distribution in Table $12.4, k-1=3-1=2$ degrees of freedom， and a 0.05 level of significance，we have $\chi_{0.05,2}^{2}=5.991$ ．Now using the sample proportions $\bar{p}_{1}=0.5520, \bar{p}_{2}=0.6000$ ，and $\bar{p}_{3}=0.7029$ ，the critical values for the three pairwise comparison tests are as follows：
（a）Chevrolet Impala and Ford Fusion

$$
C V_{12}=
$$

（b）Chevrolet Impala and Honda Accord

$$
C V_{13}=\sqrt{5.991} \sqrt{\frac{0.5520(1-0.5520)}{125}+\frac{0.7029(1-0.7029)}{175}}=0.1379
$$

（c）Ford Fusion and Honda Accord

$$
C V_{23}=\sqrt{5.991} \sqrt{\frac{0.6000(1-0.6000)}{200}+\frac{0.7029(1-0.7029)}{175}}=0.1198
$$

8．If the absolute value of any pairwise sample proportion difference \qquad ex－ ceeds its corresponding critical value， \qquad ，the pairwise difference is \qquad at the 0.05 level of significance and we can conclude that the two corresponding pop－ ulation proportions are different．

9．（Table 12．5）pairwise comparison procedure：

TABLE 12．5 Pairwise Comparison Tests for the Automobile Brand Loyalty Study

Pairwise Comparison	$\left\|\bar{p}_{i}-\bar{p}_{j}\right\|$	$C V_{i j}$	Significant if $\left\|\bar{p}_{i}-\bar{p}_{j}\right\|>C V_{i j}$
Chevrolet Impala vs．Ford Fusion	.0480	.1380	Not significant
Chevrolet Impala vs．Honda Accord	.1509	.1379	Significant
Ford Fusion vs．Honda Accord	.1029	.1198	Not significant

10．The conclusion from the pairwise comparison procedure is that the only signifi－ cant difference in customer loyalty occurs between the Chevrolet Impala and the Honda Accord．Our sample results indicate that the Honda Accord had a greater population proportion of owners who say they are likely to repurchase the Honda Accord．Thus，we can conclude that the Honda Accord（ $\bar{p}_{3}=0.7029$ ）has a greater customer loyalty than the Chevrolet Impala（ $\bar{p}_{1}=0.5520$ ）．The results of the study are inconclusive as to the comparative loyalty of the Ford Fusion．

11．While the Ford Fusion did not show significantly different results when compared to the Chevrolet Impala or Honda Accord，a larger sample may have revealed a significant difference between Ford Fusion and the other two automobiles in terms of customer loyalty．

Chapter 12： $\begin{aligned} & \text { Comparing Multiple Proportions，Test of Independence and Good } \text { Page } 11 / 28 \\ & \text { ness of Fit }\end{aligned}$

12．It is not uncommon for a multiple comparison procedure to show significance for some pairwise comparisons and yet not show significance for other pairwise com－ parisons in the study．

13．（補充說明）Why if $\left|\bar{p}_{i}-\bar{p}_{j}\right| \geq C V_{i j}$ ，the pairwise difference is significant？
－If $X_{1} \sim B\left(n_{1}, p_{1}\right)$ ，we have $E\left(X_{1}\right)=n_{1} p_{1}$ and $\operatorname{Var}\left(X_{1}\right)=n_{1} p_{1}\left(1-p_{1}\right)$ ．
－$\frac{X_{1}}{n_{1}}=\bar{p}_{1}=\hat{p}_{1}$ ．
－$E\left(\frac{X_{1}}{n_{1}}\right)=$
－ $\operatorname{Var}\left(\frac{X_{1}}{n_{1}}\right)=$
－CLT：
－Similarly for $X_{2} \sim B\left(n_{2}, p_{2}\right)$ ．
－$E\left(\bar{p}_{1}-\bar{p}_{2}\right)=$
－ $\operatorname{Var}\left(\bar{p}_{1}-\bar{p}_{2}\right)=$
－Under $H_{0}: p_{1}=p_{2}$ ，test statistic： $\bar{p}_{1}-\bar{p}_{2}$

12．2 Test of Independence

1．An important application of a chi－square test involves using sample data to test for the \qquad of two \qquad variables．For this test we take
from a population and record the observations for two categorical variables．

2．We will summarize the data by counting the number of responses for each combi－ nation of a category for variable 1 and a category for variable 2 ．

3．The null hypothesis for this test is that the two categorical variables are independent． Thus，the test is referred to as a \qquad ．

4．Example A beer industry association conducts a survey to determine the prefer－ ences of beer drinkers for light，regular，and dark beers．
（a）A sample of 200 beer drinkers is taken with each person in the sample asked to indicate a preference for one of the three types of beers：light，regular，or dark． At the end of the survey questionnaire，the respondent is asked to provide information on a variety of demographics including gender：male or female．
（b）A research question of interest to the association is whether preference for the three types of beer is independent of the gender of the beer drinker．
（c）If the two categorical variables，beer preference and gender，are independent， beer preference does not depend on gender and the preference for light，regular， and dark beer can be expected to be the same for male and female beer drinkers．
（d）However，if the test conclusion is that the two categorical variables are not independent，we have evidence that beer preference is associated or dependent upon the gender of the beer drinker．
（e）As a result，we can expect beer preferences to differ for male and female beer drinkers．In this case，a beer manufacturer could use this information to cus－ tomize its promotions and advertising for the different target markets of male and female beer drinkers．

5．The hypotheses for this test of independence are as follows：
H_{0} ：Beer preference is \qquad of gender
H_{a} ：Beer preference is \qquad of gender

6．（Table 12．6）Since an objective of the study is to determine if there is difference be－ tween the beer preferences for male and female beer drinkers，we consider gender an
and follow the usual practice of making the explanatory variable the \qquad variable in the data tabulation table．The beer preference is the \qquad variable and is shown as the \qquad variable．The sample results of the 200 beer drinkers in the study are summarized in Table 12．6．

TABLE 12．6 Sample Results for Beer Preferences of Male and Female Beer Drinkers（Observed Frequencies）

	Gender			
		Male	Female	Total
Beer Preference	Light	51	39	90
	Regular	56	21	77
	Dark	$\frac{25}{132}$	$\frac{8}{68}$	$\underline{33}$

7．For the categorical variable gender，we see 132 of the 200 in the sample were male． This gives us the estimate that \qquad ，of the beer drinker population is male．Similarly we estimate that \qquad ，of the beer drinker population is female．Thus male beer drinkers appear to outnumber female beer drinkers approximately 2 to 1 ．

8．Sample proportions or percentages for the three types of beer are
（a）Prefer Light Beer \qquad
（b）Prefer Regular Beer $77 / 200=0.385$ ，or 38.5%
（c）Prefer Dark Beer $33 / 200=0.165$ ，or 16.5%
9．Across all beer drinkers in the sample，light beer is preferred most often and dark beer is preferred least often．

10．The computations and formulas used to determine if beer preference and gender are independent are the same as those used for the chi－square test in Section 12．1． Under the assumption that the beer preferences and gender are independent．Thus the expected frequency for row i and column j is given by

$$
\begin{equation*}
e_{i j}= \tag{12.4}
\end{equation*}
$$

11．（Table 12．7）expected frequencies

$$
\begin{array}{ll}
\text { TABLE } 12.7 & \begin{array}{l}
\text { Expected Frequencies If Beer Preference Is Independent } \\
\text { of the Gender of the Beer Drinker }
\end{array}
\end{array}
$$

Beer Preference	Gender		
	Light	Male	Female

12．The chi－square test statistic．

$$
\begin{equation*}
\chi^{2}= \tag{12.5}
\end{equation*}
$$

13．With r rows and c columns in the table，the chi－square distribution will have
\qquad degrees of freedom provided the expected frequency is \qquad for each cell．

14．（Table 12．8）

$$
\begin{array}{ll}
\text { TABLE 12.8 } & \begin{array}{l}
\text { Computation of the Chi-Square Test Statistic for the Test of Independence } \\
\text { Between Beer Preference and Gender }
\end{array}
\end{array}
$$

Beer Preference	Gender	Observed Frequency $f_{i j}$	Expected Frequency $e_{i j}$	Difference $f_{i j}-e_{i j}$	Squared Difference $\left(f_{i j}-e_{i j}\right)^{2}$	Squared Difference Divided by Expected Frequency $\left(f_{i j}-e_{i j}\right)^{2} / e_{i j}$
Light	Male	51	59.40	－8．40	70.56	1.19
Light	Female	39	30.60	8.40	70.56	2.31
Regular	Male	56	50.82	5.18	26.83	． 53
Regular	Female	21	26.18	－5．18	26.83	1.02
Dark	Male	25	21.78	3.22	10.37	． 48
Dark	Female	8	11.22	－3．22	10.37	． 92
	Total	$\overline{200}$	200			$\chi^{2}=\overline{6.45}$

15．The upper tail area of the chi－square distribution with 2 degrees of freedom：

Area in Upper Tail	0.10	0.05	0.025	0.01	0.005
χ^{2} Value $(2 d f)$	4.605	5.991	7.378	9.210	10.597

16．Thus，we see the upper tail area at \qquad is between \qquad and \qquad ， and so the corresponding upper tail area or \qquad must be between 0.05 and 0．025．With \qquad ，we reject H_{0} and conclude that beer preference is not independent of the gender of the beer drinker．（Software：p－value $=.0398$ ）

17．With $\alpha=0.05$ and 2 degrees of freedom，the critical value for the chi－square test statistic is $\chi_{0.05,2}^{2}=5.991$ ．The upper tail rejection region becomes

Reject H_{0} if

With $6.45 \geq 5.991$ ，we reject H_{0} ．
18．While we now have evidence that beer preference and gender are not independent， we will need to gain additional insight from the data to assess the nature of the
\qquad between these two variables．One way to do this is to compute the probability of the beer preference responses for males and females separately．

Beer Preference	Male	Female
Light		$39 / 68=0.5735$, or 57.35%
Regular	$56 / 132=0.4242$, or 42.42%	$21 / 68=0.3088$ ，or 30.88%
Dark	$25 / 132=0.1894$ ，or 18.94%	$8 / 68=.1176$, or 11.76%

19．What observations can you make about the association between beer preference and gender in the sample？
（a）For female beer drinkers，the highest preference is for light beer at 57.35% ．
（b）For male beer drinkers，regular beer is most frequently preferred at 42.42% ．
（c）While female beer drinkers have a higher preference for light beer than males， male beer drinkers have a higher preference for both regular beer and dark beer．
（d）（Figure 12．1）Data visualization through bar charts is helpful in gaining insight as to how two categorical variables are associated．

FIGURE 12．1 Bar Chart Comparison of Beer Preference by Gender

20．Chi－Square Test for Independence of Two Categorical Variables
（1）State the null and alternative hypotheses．
H_{0} ：The two categorical variables are independent，
H_{a} ：The two categorical variables are not independent
（2）Set a level of significance α ．Select a random sample from the population and collect data for both variables for every element in the sample．Record the observed frequencies，$f_{i j}$ ，in a table with r rows and c columns．The expected frequencies must all be 5 or more for the chi－square test to be valid．Assume the null hypothesis is true and compute the expected frequencies，$e_{i j}$
（3）If the expected frequency，$e_{i j}$ ，is 5 or more for each cell，compute the test statistic：

$$
\chi^{2}=
$$

（4）Rejection rule：
i．p－value approach：Reject H_{0} if p－value $\leq \alpha$ ．
ii．Critical value approach：Reject H_{0} if $\chi^{2} \geq \chi_{\alpha,(r-1)(c-1)}^{2}$ ．
（5）Draw decision and conclusion．
21．Finally，if the null hypothesis of independence is rejected，summarizing the proba－ bilities as shown in the above example will help the analyst determine where the
\qquad or \qquad exists for the two categorical variables．

12．3 Goodness of Fit Test

1．In this section we use a chi－square test（goodness of fit tests）to determine whether a population being sampled has a \qquad －
（a）We first consider a population with a historical \qquad probability distribution and use a \qquad test to determine if new sample data indicate there has been a change in the population distribution compared to the historical distribution．
（b）We then consider a situation where an assumption is made that a population has a \qquad probability distribution and use a goodness of fit test to determine if sample data indicate that the assumption of a normal probability distribution is or is not appropriate．

Multinomial Probability Distribution

1．With a multinomial probability distribution，each element of a population is as－ signed to one and only one of three or more \qquad －

2．Wikipedia：Multinomial distribution：
https：／／en．wikipedia．org／wiki／Multinomial＿distribution
3．Example Consider the market share study being conducted by Scott Marketing Research．
（a）Over the past year，market shares for a certain product have stabilized at 30% for company A， 50% for company B，and 20% for company C．Since each customer is classified as buying from one of these companies，we have a multinomial probability distribution with three possible outcomes．
（b）The probability for each of the three outcomes is：
i．$p_{A}=$ probability a customer purchases the company A product
ii．$p_{B}=$ probability a customer purchases the company B product
iii．$p_{C}=$ probability a customer purchases the company C product
（c）Using the historical market shares，we have multinomial probability distribu－ tion with $p_{A}=0.30, p_{B}=0.50$ ，and $p_{C}=0.20$ ．
（d）Company C plans to introduce a＂new and improved＂product to replace its current entry in the market．Company C has retained Scott Marketing Re－ search to determine whether the new product will alter or change the market shares for the three companies．
（e）Specifically，the Scott Marketing Research study will introduce a sample of customers to the new company C product and then ask the customers to indicate a preference for the company A product，the company B product，or the new company C product．

4．The hypothesis test to determine if the new company C product is likely to change the historical market shares for the three companies．
H_{0} ： \qquad
H_{a} ：The population proportions are not $p_{A}=0.30, p_{B}=0.50$ ，and $p_{C}=0.20$

5．The null hypothesis is based on the historical multinomial probability distribution for the market shares．If sample results lead to the rejection of H_{0} ，Scott Marketing Research will have evidence to conclude that the introduction of the new company C product will change the market shares．

6．Let us assume that the market research firm has used a consumer panel of 200 customers．Each customer was asked to specify a purchase preference among the three alternatives：company A＇s product，company B＇s product，and company C＇s new product．The 200 responses are summarized：

Observed Frequency

Company A＇s Product	Company B＇s Product	Company C＇s New Product
48	98	54

7．Perform a goodness of fit test that will determine whether the sample of 200 cus－ tomer purchase preferences is \qquad the null hypothesis．

8．Like other chi－square tests，the goodness of fit test is based on a comparison of observed frequencies with the expected frequencies under the assumption that the null hypothesis is true．

9．The expected frequency for each category is found by multiplying the sample size of 200 by the hypothesized proportion for the category：

Expected Frequency		
Company A＇s Product Company B＇s Product Company C＇s New Product		
$200(0.30)=60$	$200(0.50)=100$	$200(0.20)=40$

10．Test Statistic for Goodness of Fit

$$
\begin{equation*}
\chi^{2}= \tag{12.6}
\end{equation*}
$$

where
（a）$f_{i}=$ \qquad frequency for category i
（b）$e_{i}=$ \qquad frequency for category i
（c）$k=$ the number of \qquad
Note：The test statistic has a chi－square distribution with $k-1$ degrees of freedom provided that the \qquad frequencies are \qquad for all categories．

11．The test for goodness of fit is always a one－tailed test with the rejection occurring in the upper tail of the chi－square distribution：

Reject H_{0} if \qquad
12．Example（Table 12．9）Let us continue with the Scott Marketing Research example and use the sample data to test the hypothesis that the multinomial population has the market share proportions $p_{A}=0.30, p_{B}=0.50$ ，and $p_{C}=0.20$ ．We will use an $\alpha=0.05$ level of significance．We proceed by using the observed and expected frequencies to compute the value of the test statistic．

TABLE 12．9 Computation of the Chi－Square Test Statistic for the Scott Marketing Research Market Share Study

Category	Hypothesized Proportion	Observed Frequency f_{i}	Expected Frequency e_{i}	Difference $f_{i}-e_{i}$	Squared Difference $\left(f_{i}-e_{i}\right)^{2}$	Squared Difference Divided by Expected Frequency $\left(f_{i}-e_{i}\right)^{2} / e_{i}$
Company A	． 30	48	60	－12	144	2.40
Company B	． 50	98	100	－2	4	． 04
Company C	． 20	54	40	14	196	4.90
Total		200				$\chi^{2}=\overline{7.34}$

13．With the expected frequencies all 5 or more，the chi－square test statistic is \qquad ．
We will reject the null hypothesis if the differences between the observed and ex－ pected frequencies are large．

14．The test statistic $\chi^{2}=7.34$ is between 5.991 and 7.378 ．Thus，the corresponding up－ per tail area or p－value must be between \qquad ．With \qquad ，
we reject H_{0} and conclude that the introduction of the new product by company C will alter the historical market shares．（Software：p－value $=0.0255$ ）

Area in Upper Tail	0.10	.05	0.025	0.01	0.005
χ^{2} Value $(2 d f)$	4.605	5.991	7.378	9.210	10.597

15．The critical value approach：with $\alpha=0.05$ and 2 degrees of freedom，the critical value for the test statistic is $\chi_{0.05}^{2}=5.991$ ．The upper tail rejection rule becomes
\qquad ．With $7.34>5.991$ ，we reject H_{0} ．

16．Now that we have concluded the introduction of a new company C product will alter the market shares for the three companies，we are interested in knowing more about how the market shares are likely to change．

17．Using the historical market shares and the sample data，we summarize the data as follows：

Company	Historical Market Share（\％）	Sample Data Market Share（\％）
A	30	
B	50	$98 / 200=0.49$, or 49
C	20	$54 / 200=0.27$, or 27

18．（Figure 12．2）This data visualization process shows that the new product will likely increase the market share for company C ．Comparisons for the other two companies indicate that company C＇s gain in market share will hurt company A more than company B ．

FIGURE 12．2 Bar Chart of Market Shares by Company Before and After the New Product for Company C

19．Multinomial Probability Distribution Goodness of Fit Test

（1）State the null and alternative hypotheses．
i．H_{0} ：The population \qquad probability distribution with specified probabilities for each of the k categories
ii．H_{a} ：The population does not follow a multinomial distribution with the specified probabilities for each of the k categories
（2）Set a level of significance α and select a random sample and record the \qquad frequencies f_{i} for each category．Assume the null hypothesis is true and de－ termine the \qquad frequency e_{i} in each category by multiplying the category probability by the sample size．
（3）If the expected frequency e_{i} is at least 5 for each category，compute the value of the test statistic．
（4）Rejection rule：
i．p－value approach：Reject H_{0} if p－value $\leq \alpha$
ii．Critical value approach：Reject H_{0} if $\chi^{2} \geq \chi_{\alpha, k-1}^{2}$ ．
（5）Draw decision and conclusion．

Normal Probability Distribution

1．The goodness of fit test for a \qquad probability distribution is also based on the use of the \qquad distribution．

2．In particular，observed frequencies for several categories of sample data are com－ pared to expected frequencies under the assumption that the \qquad has a normal probability distribution．

3．Because the normal probability distribution is \qquad ，we must modify the way the \qquad are defined and how the expected frequencies are computed．

4．Example（Table 12．10）Job applicant test data for Chemline，Inc．

TABLE 12．10	Chemline Employee Aptitude Test Scores for 50 Randomly Chosen Job Applicants				
71	66	61	65	54	93
60	86	70	70	73	73
55	63	56	62	76	54
82	79	76	68	53	58
85	80	56	61	61	64
65	62	90	69	76	79
77	54	64	74	65	65
61	56	63	80	56	71
79	84				

（a）Chemline hires approximately 400 new employees annually for its four plants located throughout the United States．The personnel director asks whether a normal distribution applies for the population of test scores．
（b）If such a distribution can be used，the distribution would be helpful in evalu－ ating specific test scores；that is，scores in the upper 20% ，lower 40% ，and so on，could be identified quickly．
（c）Hence，we want to test the null hypothesis that the population of test scores has a normal distribution．

5．Calculations：

$$
\begin{aligned}
& \bar{x}= \\
& s=
\end{aligned}
$$

6．Hypotheses about the distribution of the job applicant test scores：
（a）H_{0} ：The population of test scores has a normal distribution with mean 68.42 and standard deviation 10.41
（b）H_{a} ：The population of test scores does not have a normal distribution with mean 68.42 and standard deviation 10.41

7．（Figure 12．3）The hypothesized normal distribution：

FIGURE 12．3 Hypothesized Normal Distribution of Test Scores for the Chemline Job Applicants

8．（Figure 12．4）Define the categories of test scores such that the expected frequen－ cies will be \qquad for each category．With a sample size of 50 ，one way of establishing categories is to divide the normal probability distribution into

FIGURE 12．4 Normal Distribution for the Chemline Example with 10 Equal－Probability Intervals

9 ．With a sample size of 50 ，we would expect \qquad in each interval or category，and the rule of thumb for expected frequencies would be satisfied．Let us look more closely at the procedure for calculating the category boundaries．
（a）With a continuous probability distribution，establish intervals such that each interval has an expected frequency of \qquad ．
（b）First consider the test score cutting off the lowest \qquad of the test scores． From the table for the standard normal distribution we find that the z value for this test score is \qquad ．Therefore，the test score of \qquad provides this cutoff value for the lowest 10% of the scores．
（c）For the lowest 20\％，we find \qquad ，and thus \qquad ．
（d）Working through the normal distribution in that way provides the following test score values：

Chapter 12： $\begin{gathered}\text { Comparing Multiple Proportions，Test of Independence and Good } \\ \text { ness of Fit }\end{gathered}$

Percentage	\boldsymbol{z}	Test Score
10%	-1.28	$68.42-1.28(10.41)=55.10$
20%	-.84	$68.42-.84(10.41)=59.68$
30%	-.52	$68.42-.52(10.41)=63.01$
40%	-.25	$68.42-.25(10.41)=65.82$
50%	.00	$68.42+0(10.41)=68.42$
60%	+.25	$68.42+.25(10.41)=71.02$
70%	+.52	$68.42+.52(10.41)=73.83$
80%	+.84	$68.42+.84(10.41)=77.16$
90%	+1.28	$68.42+1.28(10.41)=81.74$

10．（Table 12．11）With the categories or intervals of test scores now defined and with the known expected frequency of five per category，we can return to the sample data of Table 12.10 and determine the observed frequencies for the categories．Doing so provides the results in Table 12．11．

TABLE 12．11 Observed and Expected Frequencies for Chemline Job Applicant Test Scores

Test Score Interval	Observed Frequency	Expected Frequency
Less than 55.10	$\boldsymbol{f}_{\boldsymbol{i}}$	$\mathbf{e}_{\boldsymbol{i}}$
55.10 to 59.68	5	5
59.68 to 63.01	5	5
63.01 to 65.82	9	5
65.82 to 68.42	6	5
68.42 to 71.02	2	5
71.02 to 73.83	5	5
73.83 to 77.16	2	5
77.16 to 81.74	5	5
81.74 and over	5	5
	Total	$\frac{6}{50}$

11．（Table 12．12）The value of the test statistic is $\chi^{2}=7.2$ ．

TABLE 12.12	Computation of the Chi－Square Test Statistic for the Chemline Job Applicant Example				
Test Score Interval	Observed Frequency f_{i}	Expected Frequency e_{i}	Difference $f_{i}-e_{i}$	Squared Difference $\left(f_{i}-e_{i}\right)^{2}$	Squared Difference Divided by Expected Frequency $\left(f_{i}-e_{i}\right)^{2} / e_{i}$
Less than 55.10	5	5	0	0	． 0
55.10 to 59.68	5	5	0	0	． 0
59.68 to 63.01	9	5	4	16	3.2
63.01 to 65.82	6	5	1	1	． 2
65.82 to 68.42	2	5	－3	9	1.8
68.42 to 71.02	5	5	0	0	． 0
71.02 to 73.83	2	5	－3	9	1.8
73.83 to 77.16	5	5	0	0	． 0
77.16 to 81.74	5	5	0	0	． 0
81.74 and over	6	5	1	1	2
	50	$\overline{50}$			$\chi^{2}=7.2$

12．Using the rule for computing the number of degrees of freedom for the goodness of fit test，we have \qquad degrees of freedom based on $k=10$ categories and $p=2$ parameters（mean and standard deviation）estimated from the sample data．

13．Suppose that we test the null hypothesis that the distribution for the test scores is a normal distribution with a 0.10 level of significance．

14．To test this hypothesis，we need to determine the p－value for the test statistic $\chi^{2}=7.2$ by finding the area in the upper tail of a chi－square distribution with 7 degrees of freedom．（Table 12．4）we find that $\chi^{2}=7.2$ provides an area in the upper tail greater than 0.10 ．Thus，we know that the p－value is greater than 0.10 ． （Software：p－value $=0.4084$ ）．

15．With \qquad ，the hypothesis that the probability distribution for the Chemline job applicant test scores is a normal probability distribution cannot be rejected．

16．Normal Probability Distribution Goodness of Fit Test

（1）State the null and alternative hypotheses．
H_{0} ：The population has a \qquad probability distribution．
H_{a} ：The population does \qquad probability distribution．
（2）Set a level of significance and select a random sample and
（a）Compute the sample mean and sample standard deviation．
（b）Define k intervals of values so that the expected frequency is at \qquad for each interval．Using \qquad is a good approach．
（c）Record the \qquad frequency of data values f_{i} in each interval de－ fined．
（3）Compute the expected number of occurrences e_{i} for each interval of values．Mul－ tiply the \qquad by the \qquad of a normal random variable being in the interval．
（4）Compute the value of the test statistic．
（5）Rejection rule：
i．p－value approach：Reject H_{0} if p－value $\leq \alpha$
ii．Critical value approach：Reject H_{0} if $\chi^{2} \geq \chi_{\alpha, k-p-1}^{2}$
where p is the number of \qquad of the distribution estimated by the sample．
（6）Draw decision and conclusion．

Chapter 12：$\quad \begin{aligned} & \text { Comparing Multiple Proportions，Test of Independence and Good } \\ & \text { ness of Fit }\end{aligned}$

© EXERCISES

$12.1: 1,2,3,7$
$12.2: 10,11,14,17$
$12.3: 19,23,25$
SUP ：29，32，33， 36
＂很多時候我們缺的不是機會，而是決心與勇氣。＂
＂Often times we lack is not the opportunity，but courage and determination．＂
— 心靈補手（Good Will Hunting，1997）

統計學（二）

Anderson＇s Statistics for Business \＆Economics（14／E）

Chapter 13：Experimental Design and Analysis of Variance

```
上課時間地點: 二 D56,商館 260206
    授課教師:吳漢銘(國立政治大學統計學系副教授)
    教學網站:http://www.hmwu.idv.tw
```

系級： \qquad學號： \qquad姓名： \qquad

Overview

1．The statistical studies can be classified as either \qquad or \qquad ．

2．In an experimental statistical study，an experiment is conducted to generate the data．
（a）An experiment begins with identifying a \qquad of interest．
（b）Then one or more other variables，thought to be \qquad ，are identified and \qquad ，and
（c）data are collected about how those variables \qquad the variable of interest．

3．In an observational study，data are usually obtained through sample \qquad and not a controlled experiment．

4．Good design principles are still employed，but the \qquad controls associated with an experimental statistical study are often not possible．

5．Example In a study of the relationship between smoking and lung cancer the researcher cannot assign a smoking habit to subjects．The researcher is restricted to simply observing the effects of smoking on people who already smoke and the effects of not smoking on people who do not already smoke．

6．In this chapter we introduce three types of experimental designs：a \qquad
\qquad design，a \qquad design＊，and a \qquad ex－ periment＊．

7．Analysis of variance（ \qquad ）can analyze the results of regression studies involving both experimental and observational data．

13．1 An Introduction to Experimental Design and Analysis of Variance

1．Example Chemitech Inc．developed a new filtration system for municipal water supplies．
（a）The industrial engineering group is responsible for determining the best as－ sembly method $(\operatorname{method} A$ ，method B ，and method $C)$ for the new filtration system．
（b）Managers at Chemitech want to determine which assembly method can pro－ duce the greatest number of filtration systems per week．
（c）In the Chemitech experiment， \qquad is the variable or \qquad ．
（d）Because three assembly methods correspond to this factor，we say that three
\qquad are associated with this experiment；each treatment corre－ sponds to one of the three assembly methods．

2．（single－factor experiment）The Chemitech problem is an example of a experiment；it involves one \qquad factor（method of assembly）．

3．More complex experiments may consist of \qquad factors；some factors may be categorical and others may be quantitative．

4．（populations）The three assembly methods or treatments define the three \qquad of interest for the Chemitech experiment．One population is all Chemitech employ－ ees who use assembly method A，another is those who use method B，and the third is those who use method C ．

5．（objective）Note that for each population the \qquad or \qquad variable is the \qquad of filtration systems assembled per week，and the pri－ mary statistical objective of the experiment is to determine whether the \qquad produced per week is the same for all three populations（meth－ ods）．

6．（experimental units）Suppose a random sample of three employees is selected from all assembly workers at the Chemitech production facility．In experimental design terminology，the three randomly selected \qquad are the experimental
\qquad ．

7．（completely randomized design）A requires that each of the three assembly methods or treatments be assigned randomly to one of the experimental units or workers．
（a）For example，method A might be randomly assigned to the second worker， method B to the first worker，and method C to the third worker．
（b）Note that this experiment would result in only one measurement or number of units assembled for each treatment．

8．（replicates）To obtain additional data for each assembly method，we must \qquad or \qquad the basic experimental process．
（a）Suppose，for example，we selected 15 workers and then randomly as signed each of the three treatments to 5 of the workers．
（b）Because each method of assembly is assigned to 5 workers，we say that have been obtained．
（Figure 13．1）the completely randomized design for the Chemitech experiment．

FIGURE 13．1 Completely Randomized Design for Evaluating the Chemitech Assembly Method Experiment

Data Collection

1．Once we are satisfied with the experimental design，we proceed by collecting and analyzing the data．In the Chemitech case，the employees would be instructed in how to perform the assembly method assigned to them and then would begin assembling the new filtration systems using that method．

2．（Table 13．1）After this assignment and training，the number of units assembled by each employee during one week is as shown in Table 13．1．The sample means， sample variances，and sample standard deviations for each assembly method are also provided．From these data， \qquad appears to result in higher production rates than either of the other methods．

TABLE 13.1 Number of Units Produced by 15 Workers

	Method		
A	B	C	
	58	58	48
	64	69	57
	55	71	59
Sample mean	66	64	47
Sample variance	67	68	49
Sample standard deviation	62	66	52
	27.5	26.5	31.0

3．（question）is whether the three sample means observed are different enough for us to conclude that the means of the populations corresponding to the three methods of assembly are different．

4．Turn the question to Statistical terms：$\mu_{1}, \mu_{2}, \mu_{3}=$ mean number of units produced per week using method $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ，respectively

5．Although we will never know the actual values of μ_{1}, μ_{2} ，and μ_{3} ，we want to use the sample means to test the following hypotheses．

$$
H_{0}: \mu_{1}=\mu_{2}=\mu_{3}, \quad H_{a}: \text { Not all population means are equal }
$$

6．The \qquad is the statistical procedure used to deter－ mine whether the observed differences in the three sample means are large enough to reject H_{0} ．

Assumptions for Analysis of Variance

Three assumptions are required to use analysis of variance．
1．For each population，the response variable is \qquad ．
Implication：In the Chemitech experiment，the number of units produced per week （response variable）must be normally distributed for each assembly method．

2．The variance of the \qquad ，is the same for all of the popula－ tions．

Implication：In the Chemitech experiment，the variance of the number of units produced per week must be the same for each assembly method．

3．The observations must be \qquad ．
Implication：In the Chemitech experiment，the number of units produced per week for each employee must be independent of the number of units produced per week for any other employee．

Analysis of Variance：A Conceptual Overview

1．If the means for the three populations are equal，we would expect the three to be close together．
（a）The more the sample means \qquad ，the stronger the evidence we have for the conclusion that the population means \qquad ．
（b）If the \qquad among the sample means is \qquad it supports
\qquad ；if the variability among the sample means is \qquad ，＂it supports
\qquad ．

2．If the null hypothesis，$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ ，is true，we can use the the sample means to develop an estimate of \qquad －
（a）If the assumptions for analysis of variance are satisfied and the null hypothesis is true，each sample will have come from the same \qquad distribution with mean \qquad and variance \qquad ．
（b）（Chapter 7）the sampling distribution of the sample mean \bar{x} for a simple ran－ dom sample of size n from a normal population will be normally distributed with mean \qquad and variance \qquad －（ \qquad
（c）（Figure 13．2）if H_{0} is true，we can think of each of the three sample means， $\bar{x}_{1}=62, \bar{x}_{2}=66$ ，and $\bar{x}_{3}=52$ from Table 13．1，as values drawn at random from the sampling distribution shown in Figure 13．2．

FIGURE 13．2 Sampling Distribution of \bar{x} Given H_{0} Is True

3．When the sample sizes are equal，as in the Chemitech experiment，the best estimate of the mean of the sampling distribution of \bar{x} is the \qquad or \qquad
\qquad ．In the Chemitech experiment，an estimate of the mean of the sampling distribution of \bar{x} is \qquad ．We refer to this estimate as the \qquad ．

4．An estimate of the variance of the sampling distribution of \bar{x} ， \qquad is provided by the variance of the three sample means．

$$
s_{\bar{x}}^{2}=
$$

\qquad
5．Because \qquad ，solving for σ^{2} gives

$$
\sigma^{2}=
$$

Hence，

Estimate of $\sigma^{2}=n$（Estimate of $\left.\sigma_{\bar{x}}^{2}\right)=$ \qquad ．

6．The result，$n s_{\bar{x}}^{2}=260$ ，is referred to as the \qquad estimate of σ^{2} ．

7．The between treatments estimate of σ^{2} is based on the assumption that \qquad ． In this case，each sample comes from the \qquad population，and there is only
\qquad sampling distribution of \bar{x} ．

8．Illustrate what happens when H_{0} is false，suppose the population means all \qquad ．
（a）Note that because the three samples are from \qquad populations with different means，they will result in three \qquad sampling distributions．
（b）（Figure 13．3）The sample means are not as close together as they were when H_{0} was true．Thus，$s_{\bar{x}}^{2}$ will be larger，causing the between treatments estimate of σ^{2} to be \qquad ．
FIGURE 13．3 Sampling Distributions of \bar{x} Given H_{0} Is False

（c）In general，when the population means are not equal，the between treatments estimate will \qquad the population variance σ^{2} ．
（d）When a simple random sample is selected from each population，each of the sample variances provides an \qquad estimate of σ^{2} ．Hence，we can
\qquad or \qquad the individual estimates of σ^{2} into one overall es－ timate．
（e）The estimate of σ^{2} obtained in this way is called the \qquad or \qquad estimate of σ^{2} ．
（f）Because each sample variance provides an estimate of σ^{2} based only on the variation within each sample，the within treatments estimate of σ^{2} is not af－ fected by whether the population means are equal．
（g）When the sample sizes are equal，the within treatments estimate of σ^{2} can be obtained by computing the \qquad of the individual sample variances．

9．Example For the Chemitech experiment we obtain
Within treatments estimate of $\sigma^{2}=$
（a）The between treatments estimate of $\sigma^{2}(260)$ is much \qquad than the within treatments estimate of σ^{2}（28．33）．
（b）The \qquad of these two estimates is $260 / 28.33=9.18$ ．

10．If the null hypothesis is \qquad ，
（a）The between treatments approach provides a \qquad estimate of σ^{2} ．
（b）The two estimates will be similar and their ratio will be close to \qquad ．

11．If the null hypothesis is \qquad ，
（a）The between treatments approach \qquad σ^{2}
（b）the between treatments estimate will be larger than the within treatments estimate，and their ratio will be \qquad ．

12．In the next section we will show how large this ratio must be to reject H_{0} ．

13．Summary：The logic behind ANOVA is based on the development of two indepen－ dent estimates of the common population variance \qquad ．
（a）One estimate of σ^{2} is based on the variability \qquad the sample means themselves．
（b）The other estimate of σ^{2} is based on the variability of the data \qquad each sample．
（c）By comparing these two estimates of σ^{2} ，we will be able to determine whether the population means are equal．

補充說明：

ANOVA Table

$$
\begin{aligned}
T_{j} & =\sum_{i=1}^{n_{j}} X_{i j} \quad \bar{X}_{j}=\frac{T_{j}}{n_{j}} \\
T & =\sum_{j=1}^{k} T_{j} \quad \bar{X}=\frac{T}{N} \\
S^{2} & =\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} \frac{\left(X_{i j}-\bar{X}\right)^{2}}{N-1}
\end{aligned}
$$

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k}
$$

$$
X_{i j}=\mu_{j}+\epsilon_{i j} \quad i=1, \cdots, n_{j}
$$

$$
j=1, \cdots, k
$$

$$
\epsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

$$
\left(X_{i j}-\bar{X}\right)=\left(X_{i j}-\bar{X}_{j}\right)+\left(\bar{X}_{j}-\bar{X}\right)
$$

$$
\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(X_{i j}-\bar{X}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left[\left(X_{i j}-\bar{X}_{j}\right)+\left(\bar{X}_{j}-\bar{X}\right)\right]^{2}
$$

$$
\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(X_{i j}-\bar{X}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(X_{i j}-\bar{X}_{j}\right)^{2}+\sum_{j=1}^{k} \sum_{i=1}^{n_{j}}\left(\bar{X}_{j}-\bar{X}\right)^{2}
$$

Source	SS	df	MS	F	p
Between	$S S_{B}$	$k-1$	$M S_{B}$	$M S_{B} / M S_{W}$	<0.05
Within	$S S_{W}$	$N-k$	$M S_{W}$		
Total	$S S_{T}$	$N-1$			

13．2 Analysis of Variance and the Completely Ran－ domized Design

1．How analysis of variance can be used to test for the equality of k population means for a \qquad randomized design．

2．The general form of the hypotheses tested is
H_{0} ： \qquad ，$H_{a}:$ Not all population means are equal
where μ_{j} is mean of the j th population．
3．We assume that a simple random sample of size \qquad has been selected from each of the k \qquad or \qquad ．

4．For the resulting sample data，let
（a）$x_{i j}$ ：value of observation i for treatment $j, i=1,2, \cdots, n_{j}, j=1,2, \cdots, k$
（b）n_{j} ：number of observations for treatment j ．
（c） \bar{x}_{j} ：sample mean for treatment j ，
（d）s_{j}^{2} ：sample variance for treatment j ，
（e）s_{j} ：sample standard deviation for treatment j
5．The overall sample mean，denoted \qquad ，is the sum of all the observations divided by the total number of observations：

$$
\begin{equation*}
\overline{\bar{x}}= \tag{13.3}
\end{equation*}
$$

where $n_{T}=n_{1}+n_{2}+\cdots+n_{k}$
6．If the size of each sample is $n, n_{T}=k n$ ；the overall sample mean is just the
\qquad of the k sample means．

$$
\begin{equation*}
\overline{\bar{x}}=\frac{\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} x_{i j}}{k n}=\frac{\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} x_{i j} / n}{k}= \tag{13.5}
\end{equation*}
$$

7．The overall sample mean can also be computed as a \qquad of the k sample means．

$$
\overline{\bar{x}}=
$$

\qquad

8．Example Each sample in the Chemitech experiment consists of $n=5$ observations （Table 13．1），we obtained the following result：

$$
\overline{\bar{x}}=\frac{62+66+52}{3}=60
$$

If the null hypothesis is true $\left(\mu_{1}=\mu_{2}=\mu_{3}=\mu\right)$ ，the overall sample mean of 60 is the \qquad estimate of the population mean μ ．

Between－Treatments Estimate of Population Variance

1．A between treatments estimate of σ^{2} when the sample sizes were equal．
（a）This estimate of σ^{2} is called the \qquad due to \qquad and is denoted \qquad ：

$$
\begin{equation*}
M S T R= \tag{13.6}
\end{equation*}
$$

（b）The numerator in equation（13．6）is called the \qquad due to treatments and is denoted \qquad ．
（c）The denominator，$k-1$ ，represents the degrees of freedom associated with SSTR．
（d）Mean Square Due to Treatments

$$
\begin{equation*}
M S T R=\frac{S S T R}{k-1} \tag{13.7}
\end{equation*}
$$

where

$$
\begin{equation*}
S S T R= \tag{13.8}
\end{equation*}
$$

（e）If H_{0} is true，MSTR provides an \qquad estimate of σ^{2} ．However，if the means of the k populations are not equal，MSTR is not an unbiased estimate of σ^{2} ；in fact，in that case，MSTR should \qquad σ^{2} ．
（f）If each sample consists of n observations，equation（13．6）can be written as
\qquad

2．Example For the Chemitech data in Table 13．1，we obtain the following results：

$$
\begin{aligned}
S S T R & =\sum_{j=1}^{k} n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}=5(62-60)^{2}+5(66-60)^{2}+5(52-60)^{2}= \\
M S T R & =\frac{S S T R}{k-1}=\frac{520}{2}=
\end{aligned}
$$

Within－Treatments Estimate of Population Variance

1．A within treatments estimate of σ^{2} when the sample sizes were equal．
（a）This estimate of σ^{2} is called the \qquad due to \qquad and is denoted \qquad ：

$$
\begin{equation*}
M S E= \tag{13.9}
\end{equation*}
$$

（b）The numerator in equation（13．9）is called the \qquad due to error and is denoted \qquad ．
（c）The denominator of MSE is referred to as the degrees of freedom associated with SSE．
（d）Mean Square Due to Error

$$
\begin{equation*}
M S E= \tag{13.10}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } S S E= \tag{13.11}
\end{equation*}
$$

（e）Note that MSE is based on the variation within each of the treatments；it is not influenced by whether the null hypothesis is true．Thus，MSE \qquad provides an \qquad estimate of σ^{2} ．
（f）If each sample has n observations，$n_{T}=k n$ ；thus， \qquad ，and equation（13．9）can be rewritten as

$$
M S E=\frac{\sum_{j=1}^{k}(n-1) s_{j}^{2}}{k(n-1)}=
$$

\qquad
（g）If the sample sizes are the same，$M S E$ is the average of the \qquad ．
（h）Note that it is the same result we used in Section 13.1 when we introduced the concept of the within－treatments estimate of σ^{2} ．

2．Example For the Chemitech data in Table 13.1 we obtain the following results．

$$
\begin{aligned}
S S E & =\sum_{j=1}^{k}\left(n_{j}-1\right) s_{j}^{2}=(5-1) 27.5+(5-1) 26.5+(5-1) 31= \\
M S E & =\frac{S S E}{n_{T}-k}=\frac{340}{15-3}=\frac{340}{12}=
\end{aligned}
$$

\qquad

Comparing the Variance Estimates：The F Test

1．If the null hypothesis is \qquad ，MSTR and MSE provide two independent，un－ biased estimates of σ^{2} ．

2．（Chapter 11）For \qquad populations，the sampling distribution of the ratio of two independent estimates of σ^{2} follows an \qquad distribution．

3．Hence，if the null hypothesis is true and the ANOVA assumptions are valid，the sampling distribution of \qquad is an \qquad distribution with numer－ ator degrees of freedom equal to \qquad and denominator degrees of freedom equal to \qquad ．
（a）If the null hypothesis is true，the value of $M S T R / M S E$ should appear to have been selected from this \qquad distribution．
（b）If the null hypothesis is false，the value of MSTR／MSE will be \qquad because MSTR overestimates σ^{2} ．

4．Hence，we will reject H_{0} if the resulting value of $M S T R / M S E$ appears to be
\qquad to have been selected from an F distribution with $k-1$ numerator degrees of freedom and $n_{T}-k$ denominator degrees of freedom．

5．Test Statistic for the Equality of K Population Means

6．The test statistic follows an F distribution with $k-1$ degrees of freedom in the numerator and $n_{T}-k$ degrees of freedom in the denominator．（ \qquad
7．Example Let us return to the Chemitech experiment and use a level of significance
\qquad to conduct the hypothesis test．
（a）The value of the test statistic is

$$
F=\frac{M S T R}{M S E}=
$$

\qquad
（b）The numerator degrees of freedom is $k-1=3-1=2$ and the denominator degrees of freedom is $n_{T}-k=15-3=12$ ．
（c）Because we will only reject the null hypothesis for large values of the test statistic，the p－value is the \qquad of the F distribution to the right of the test statistic $F=9.18$ ．
（d）（Figure 13．4）shows the sampling distribution of $F=M S T R / M S E$ ，the value of the test statistic，and the upper tail area that is the p－value for the hypothesis test．
$\begin{array}{ll}\text { FIGURE } 13.4 & \begin{array}{l}\text { Computation of } p \text {－Value Using the Sampling Distribution } \\ \text { of MSTR／MSE }\end{array}\end{array}$ of MSTR／MSE

（e）（Table 4 of Appendix B）the upper tail of an F distribution with 2 numerator degrees of freedom and 12 denominator degrees of freedom．

Area in Upper Tail	0.10	0.05	0.025	0.01
F Value $\left(d f_{1}=2, d f_{2}=12\right)$	2.81	3.89	5.10	6.93

（f）（the p－value approach）Because \qquad ，the area in the upper tail at $F=9.18$ is less than 0.01 ．Thus，the p－value is less than 0.01 （Software： p－value $=0.004$ ．）
（g）With \qquad ，H_{0} is rejected．
（h）（conclusion）The test provides sufficient evidence to conclude that the means of the three populations are not equal．In other words，analysis of variance
supports the conclusion that the population mean number of units produced per week for the three assembly methods are not equal．
（i）（the critical value approach）With \qquad ，and conclude that the means of the three populations are not equal．

8．Test for the Equality of K Population Means

$$
H_{0}: \quad \mu_{1}=\mu_{2}=\cdots=\mu_{k}
$$

H_{a} ：Not all population means are equal

Test Statistic

$$
F=\frac{M S T R}{M S E}
$$

Rejection Rule

p－value approach ：Reject H_{0} if p－value $\leq \alpha$
Critical value approach ：Reject H_{0} if $F \geq F_{\alpha . k-1, n_{T}-k}$

ANOVA Table

1．（Table 13．2）The results of the preceding calculations can be displayed conveniently in a table referred to as the analysis of variance or \qquad table．The general form of the ANOVA table for a completely randomized design is：

TABLE 13．2 ANOVA Table for a Completely Randomized Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	p－value
Treatments	SSTR	$k-1$	MSTR $=\frac{\text { SSTR }}{k-1}$	$\frac{\text { MSTR }}{\text { MSE }}$	
Error	SSE	$n_{T}-k$	MSE $=\frac{\text { SSE }}{n_{T}-k}$		
Total	SST	$n_{T}-1$			

2．（Table 13．3）JMP／Excel output

TABLE 13．3 Analysis of Variance Table for the Chemitech Experiment

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	p－value
Treatments	520	2	260.00	9.18	.004
Error	340	12	28.33		
Total	860	14			

3．Total sum of squares $(S S T)$ ：
（a）The sum of squares associated with the source of variation referred to as
\qquad is called the total sum of squares（ \qquad ）．
（b）$S S T=$ \qquad ，and that the degrees of freedom associated with this \qquad sum of squares is the sum of the degrees of freedom associated with the sum of squares due to \qquad and the sum of squares due to \qquad ．（ \qquad ．）
（c）We point out that $S S T$ divided by its degrees of freedom $n_{T}-1$ is the that would be obtained if we treated the entire set of 15 observations as one data set．
（d）With the entire data set as one sample，the formula for computing the total sum of squares，$S S T$ ，is

$$
\begin{equation*}
S S T= \tag{13.13}
\end{equation*}
$$

4．ANOVA can be viewed as the process of partitioning the total sum of squares and the degrees of freedom into their corresponding sources： \qquad ．

Computer Results for Analysis of Variance

1．（Figure 13．5）JMP／Excel output for the Chemitech experiment：

FIGURE 13．5 Output for the Chemitech Experiment Analysis of Variance

Source	DF	Adj SS	Adj MS	F－Value	P －Value
Factor	2	520.0	260.00	9.18	． 004
Error	12	340.0	28.33		
Total	14	860.0			
Model Summary					
$\begin{array}{r} \mathrm{S} \\ 5.32291 \end{array}$	$\begin{gathered} \text { R-sq } \\ 60.47 \% \end{gathered}$	$\begin{gathered} \text { R-sq (adj) } \\ 53.88 \% \end{gathered}$			
Means					
Factor	N	Mean	StDev	95\％CI	
Method A	5	62.00	5.24	（56．81，67．19）	
Method B	5	66.00	5.15	（60．81，71．19）	
Method C	5	52.00	5.57	（46．81，57．19）	
Pooled StDev $=5.32291$					

2．The square root of MSE provides the best estimate of the population standard deviation σ ．This estimate of σ in Figure 13.5 is Pooled StDev ；it is equal to 5.323 ．

3．A 95% confidence interval estimate of the population mean for Method A．
where s is the estimate of the population standard deviation σ ．Because the best estimate of σ is provided by the Pooled StDev，we use a value of 5.323 for σ in expression（13．15）．

4．The degrees of freedom for the t value is 12 ，the degrees of freedom associated with the error sum of squares．Hence，with $t_{0.025}=2.179$ we obtain

$$
62 \pm 2.179 \frac{5.323}{\sqrt{5}}=62 \pm 5.19
$$

Thus，the individual 95% confidence interval for Method A goes from 62－5．19＝ 56.81 to $62+5.19=67.19$ ．

Testing for the Equality of k Population Means：An Observa－ tional Study

1．ANOVA can also be used to test for the equality of three or more population means using data obtained from an \qquad ．

2．Example（Table 13．4）National Computer Products，Inc．（NCP）manufactures printers and fax machines at plants located in Atlanta，Dallas，and Seattle．To measure how much employees at these plants know about quality management，a random sample of 6 employees was selected from each plant and the employees selected were given a quality awareness examination．The examination scores for these 18 employees are shown in Table 13．4．Managers want to use these data to test the hypothesis that the mean examination score is the same for all three plants．

TABLE 13．4 Examination Scores for 18 Employees

	Plant 1	Plant 2	Plant 3
Atlanta	Dallas	Seattle	
	85	71	59
	75	75	64
	82	73	62
	76	74	69
Sample mean	71	69	75
Sample variance	85	82	67
Sample standard deviation	79	74	66
	34	20	32
	5.83	4.47	5.66

3．Define population 1 as all employees at the Atlanta plant，population 2 as all em－ ployees at the Dallas plant，and population 3 as all employees at the Seattle plant． Let \qquad mean examination score for population $j, j=1,2,3$

4．Want to use the sample results to test the following hypotheses：

$$
\begin{array}{ll}
H_{0}: & \mu_{1}=\mu_{2}=\mu_{3} \\
H_{a}: & \text { Not all population means are equal }
\end{array}
$$

5．Note that the hypothesis test for the NCP observational study is \qquad as the hypothesis test for the Chemitech experiment．

6．Even though the same ANOVA methodology is used for the analysis，it is worth noting how the NCP observational statistical study differs from the Chemitech ex－ perimental statistical study．

7．The individuals who conducted the NCP study had \qquad over how the plants were assigned to individual employees．That is，the plants were already in operation and a particular employee worked at one of the three plants．All that NCP could do was to select a random sample of 6 employees from each plant and administer the quality awareness examination．

8．To be classified as an \qquad ，NCP would have had to be able to randomly select 18 employees and then assign the plants to each employee in a random fashion．

13．3 Multiple Comparison Procedures

1．When we use analysis of variance to test whether the means of k populations are equal， \qquad of the null hypothesis allows us to conclude only that the population means are not all equal．

2．In some cases we will want to go a step further and determine where the differences among means occur．

3．To show how \qquad procedures can be used to conduct statisti－ cal comparisons between pairs of population means．

Fisher＇s LSD

1．Suppose that analysis of variance provides statistical evidence to \qquad the null hypothesis of equal population means．Fisher＇s procedure can be used to determine where the differences occur．

2．Example（Section 13．1）The Chemitech experiment．Using analysis of variance， we concluded that the mean number of units produced per week are not the same for the three assembly methods．In this case，the followup question is：We believe the assembly methods differ，but where do the differences occur？

3．Fisher＇s LSD Procedure

$$
H_{0}: \quad, \quad H_{a}: \mu_{i} \neq \mu_{j}
$$

Test Statistic

$$
\begin{equation*}
t= \tag{13.16}
\end{equation*}
$$

Rejection Rule

－p－value approach： $\operatorname{Reject} H_{0}$ if p－value $\leq \alpha$ ．
－Critical value approach：Reject H_{0} if \qquad or \qquad ．
where the value of $t_{\alpha / 2}$ is based on a t distribution with $n_{T}-k$ degrees of freedom．
Question （p616）

For the Chemitech experiment，apply Fisher＇s LSD Procedure to determine whether there is a significant difference between the means of population 1 （Method A）and population $2($ Method B）at the $\alpha=0.05$ level of significance． sol：

Area in Upper Tail	0.20	0.10	0.05	0.025	0.01	0.005
t Value $(12 d f)$	0.873	1.356	1.782	2.179	2.681	3.055

4．Many practitioners find it easier to determine how large the difference between the sample means must be to reject H_{0} ．In this case the test statistic is \qquad ， and the test is conducted by the following procedure．

5．Fisher＇s LSD Procedure Based on the Test Statistic $\bar{x}_{i}-\bar{x}_{j}$

$$
H_{0}: \mu_{i}=\mu_{j}, \quad H_{a}: \mu_{i} \neq \mu_{j}
$$

Test Statistic

Rejection Rule at a Level of Significance α Reject H_{0} if $\left|\bar{x}_{i}-\bar{x}_{j}\right| \geq L S D$ where

$$
\begin{equation*}
L S D= \tag{13.17}
\end{equation*}
$$

6．Confidence Interval Estimate of the Difference Between Two Population Means Using Fisher＇s LSD Procedure

where

$$
\begin{equation*}
L S D= \tag{13.19}
\end{equation*}
$$

and $t_{\alpha / 2}$ is based on a t distribution with $n_{T}-k$ degrees of freedom．
7．If the confidence interval in expression（13．18）includes the value \qquad ，we cannot reject the hypothesis that the two population means are equal．

8．However，if the confidence interval does not include the value zero，we conclude that there is a difference between the population means．

Question （p617）

For the Chemitech experiment，apply Fisher＇s LSD Procedure based on the Test Statistic $\bar{x}_{i}-\bar{x}_{j}$ to determine whether there is a significant difference（a）between the means of population 1 （Method A）and population 3 （Method C），（b）between the means of population $2($ Method $B)$ and population $3(\operatorname{Method} \mathrm{C})$ at the $\alpha=$ 0.05 level of significance．Find a 95% confidence interval estimate of the difference between the means of populations 1 and 2 and make a conclusion．
sol：

Type I Error Rates

1．ANOVA gave us statistical evidence to reject or not reject the null hypothesis of equal population means．

2．We showed how Fisher＇s LSD procedure can be used in such cases to determine where the differences occur．Technically，it is referred to as a \qquad or
\qquad LSD test because it is employed only if we first find a significant F value by using analysis of variance．

3．To see why this distinction is important in multiple comparison tests，we need to explain the difference between a \qquad Type I error rate and an
\qquad Type I error rate．

4．In the Chemitech experiment we used Fisher＇s LSD procedure to make three pairwise comparisons．

$$
\begin{array}{ccc}
\text { Test 1 } & \text { Test 2 } & \text { Test } 3 \\
H_{0}: \mu_{1}=\mu_{2} & H_{0}: \mu_{1}=\mu_{3} & H_{0}: \mu_{2}=\mu_{3} \\
H_{a}: \mu_{1} \pm \mu_{2} & H_{a}: \mu_{1} \pm \mu_{3} & H_{a}: \mu_{2} \neq \mu_{3}
\end{array}
$$

5．In each case，we used a level of significance of $\alpha=0.05$ ．

6．Therefore， \qquad ，if the null hypothesis is true，the probability that we will make a Type I error is $\alpha=0.05$ ；hence，the probability that we will not make a Type I error on each test is \qquad ．

7．In discussing multiple comparison procedures we refer to this probability of a Type I error $(\alpha=0.05)$ as the \qquad ；It indicate the level of significance associated with a \qquad pairwise comparison．

8．What is the probability that in making three pairwise comparisons，we will commit a Type I error on \qquad of the three tests？
（a）To answer this question，note that the probability that we will not make a Type I error on any of the three tests is \qquad ．
（b）The probability of making at least one Type I error is \qquad ．
（c）Thus，when we use Fisher＇s LSD procedure to make all three pairwise compar－ isons，the Type I error rate associated with this approach is not 0.05 ，but actu－ ally 0.1426 ；we refer to this error rate as the \qquad or \qquad Type I error rate．

9．To avoid confusion，we denote the experimentwise Type I error rate as \qquad ．

10．The experimentwise Type I error rate gets larger for problems with more popu－ lations．For example，a problem with five populations has 10 possible pairwise comparisons．If we tested all possible pairwise comparisons by using Fisher＇s LSD with a comparisonwise error rate of $\alpha=0.05$ ，the experimentwise Type I error rate would be \qquad ．

11．In such cases，practitioners look to alternatives that provide better control over the experimentwise error rate．

12．One alternative for controlling the overall experimentwise error rate，referred to as the \qquad ，involves using a smaller comparisonwise error rate for each test．

13．For example，if we want to test C pairwise comparisons and want the maximum probability of making a Type I error for the overall experiment to be $\alpha_{E W}$ ，we simply use a comparisonwise error rate equal to \qquad ．

14．In the Chemitech experiment，if we want to use Fisher＇s LSD procedure to test all three pairwise comparisons with a maximum experimentwise error rate of \qquad ， we set the comparisonwise error rate to be \qquad －

15．（Recall Chapter 9）For a fixed sample size，any decrease in the probability of making a Type I error will result in an increase in the probability of making a \qquad error，which corresponds to accepting the hypothesis that the two population means are equal when in fact they are not equal．

16．As a result，many practitioners are reluctant to perform individual tests with a low comparisonwise Type I error rate because of the increased risk of making a Type II error．

17．Several other procedures，such as \qquad and \qquad
\qquad ，have been developed to help in such situations．However，there is considerable controversy in the statistical community as to which procedure is ＂best．＂The truth is that no one procedure is best for all types of problems．

13．4 Randomized Block Design＊

13．5 Factorial Experiment＊

（）EXERCISES

13.2 ： $1,4,7,8,10$
13.3 ： $13,15,18,19$

SUP ：35， 37
＂會讓人後悔的從來都不是失敗，而是當機會出現時你沒有全力以赴。＂
＂Regrets don＇t come from failure，they come from moments you failed to give your best．＂
—熱底辣妹（Flying Colors，2015）

統計學（一）

Anderson＇s Statistics for Business \＆Economics（14／E）

Chapter 14：Simple Linear Regression

上課時間地點：二 D56，商館 260206
授課教師：吳漢銘（國立政治大學統計學系副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

Overview

1．Managerial decisions often are based on the relationship between two or more vari－ ables．

2．Examples
（a）After considering the relationship between advertising expenditures and sales， a marketing manager might attempt to \qquad sales for a given level of advertising expenditures．
（b）A public utility might use the relationship between the daily high temperature and the demand for electricity to \qquad electricity usage on the basis of next month＇s anticipated daily high temperatures．

3．Regression analysis can be used to develop \qquad showing how the vari－ ables are related．

4．In regression terminology，the variable being predicted is called the \qquad variable（denoted by ）．The variable or variables being used to predict the value of the dependent variable are called the \qquad variables（denoted by \qquad ）．

5．Simple linear regression：the simplest type of regression analysis involving
\qquad independent variable and \qquad dependent variable in which the re－ lationship between the variables is approximated by a \qquad ．

6．Regression analysis involving two or more \qquad variables is called
\qquad regression analysis．

7．Multiple regression and cases involving \qquad relationships are covered in Chapters 15 and 16.

14．1 Simple Linear Regression Model

1．Example Armand＇s Pizza Parlors
（a）Armand＇s Pizza Parlors is a chain of Italian－food restaurants located in a five－ state area．Armand＇s most successful locations are near college campuses．
（b）The managers believe that \qquad for these restaurants（denoted by＿＿＿are related positively to the \qquad population （denoted by \qquad ）；
（c）Restaurants near campuses with a large student population tend to generate more sales than those located near campuses with a small student population．

2．Using regression analysis，we can develop an equation showing how the dependent variable y is related to the independent variable x ．

Regression Model and Regression Equation

1．（population）In the Armand＇s Pizza Parlors example，the population consists of all the Armand＇s restaurants．For every restaurant in the population，there is a value of
\qquad （student population）and a corresponding value of \qquad （quarterly sales）．

2．（regression model）The \qquad that describes how y is related to x and an \qquad is called the regression model．

3．Simple Linear Regression Model

β_{0} and β_{1} are referred to as the \qquad of the model，and ϵ（the Greek letter epsilon）is a \qquad referred to as the \qquad ．

4．The error term accounts for the \qquad that cannot be explained by the \qquad between x and y ．

5．The population of all Armand＇s restaurants can also be viewed as a collection of
\qquad ，one for each distinct value of \qquad ．
（a）For example，one subpopulation consists of all Armand＇s restaurants located near college campuses with \qquad ；another subpopulation con－ sists of all Armand＇s restaurants located near college campuses with \qquad ； and so on．
（b）Each subpopulation has a corresponding \qquad Thus， a distribution of y values is associated with restaurants located near campuses with 8000 students；a distribution of y values is associated with restaurants located near campuses with 9000 students；and so on．

6．（regression equation）Each distribution of y values has its own \qquad or ．The equation that describes how the expected value of y ， denoted $E(y)$ ，is related to x is called the \qquad ．

7．Simple Linear Regression Equation

The graph of the simple linear regression equation is a straight line；β_{0} is the \ldots of the regression line，β_{1} is the \qquad ，and $E(y)$ is the mean or expected value of y for a given value of x ．

8．（Figure 14．1）Possible regression lines

FIGURE 14．1 Possible Regression Lines in Simple Linear Regression

Panel A：
Positive Linear Relationship

Panel B：
Negative Linear Relationship

Panel C：

 No Relationship
Estimated Regression Equation

1．If the values of the population parameters \qquad and \qquad were known，we could use equation（14．2）to compute the mean value of y for a given value of x ．

2．In practice，the parameter values are not known and must be estimated using
\qquad ．Sample statistics（denoted \qquad and \qquad ）are computed as estimates of the population parameters β_{0} and β_{1} ．Substituting the values of the sample statistics b_{0} and b_{1} for β_{0} and β_{1} in the regression equation，we obtain
\qquad ．

3．Estimated Simple Linear Regression Equation

4．（the estimated regression line）The graph of the estimated simple linear regres－ sion equation is called the estimated regression line；b_{0} is the y－intercept and b_{1} is the slope．

5．In general， \qquad is the point estimator of $E(y)$ ，the mean value of y for a given value of x ．

6．（Figure 14．2）A summary of the estimation process for simple linear regression．

FIGURE 14．2 The Estimation Process in Simple Linear Regression

7．Example Armand＇s Pizza Parlors
（a）To estimate the mean or expected value of quarterly sales for all restaurants located near campuses with 10,000 students，Armand＇s would substitute the value of 10,000 for x in equation（14．3）．
（b）In some cases，however，Armand＇s may be more interested in predicting sales for one particular restaurant．
（c）For example，suppose Armand＇s would like to predict quarterly sales for the restaurant they are considering building near Talbot College，a school with 10,000 students．As it turns out，the best predictor of y for a given value of x is also provided by \qquad ．
（d）Thus，to predict quarterly sales for the restaurant located near Talbot College， Armand＇s would also substitute the value of 10,000 for x in equation（14．3）．

8．The value of \hat{y} provides both a \qquad of $E(y)$ for a given value of x and a \qquad of an individual value of y for a given value of x ．

Notes + Comments

1．Regression analysis cannot be interpreted as a procedure for establishing a \qquad relationship between variables．It can only indicate how or to what extent variables
are \qquad with each other．

2．Any conclusions about cause and effect must be based upon the \qquad of those individuals most knowledgeable about the application．

3．The regression equation in simple linear regression is $E(y)=\beta_{0}+\beta_{1} x$ ．More advanced texts in regression analysis often write the regression equation as
to emphasize that the regression equation provides the mean value of y for a given value of x ．

14．2 Least Squares Method

1．The \qquad is a procedure for using sample data to find the estimated regression equation．

2．（Table 14．1）Example Armand＇s Pizza Parlor
Suppose data were collected from a sample of 10 Armand＇s Pizza Parlor restaurants located near college campuses．For the i th observation or restaurant in the sample， x_{i} is the size of the student population（in thousands）and y_{i} is the quarterly sales （in thousands of dollars）．

TABLE 14．1 $\begin{aligned} & \text { Stud } \\ & \\ & \\ & \text { Pizza }\end{aligned}$	Student Population and Quarterly Sales Data for 10 Armand＇s Pizza Parlors	
Restaurant	Student Population（1000s）	Quarterly Sales（\＄1000s）
i	x_{i}	y_{i}
1	2	58
2	6	105
3	8	88
4	8	118
5	12	117
6	16	137
7	20	157
8	20	169
9	22	149
10	26	202

3．（Figure 14．3）Scatter diagrams for regression analysis are constructed with the inde－ pendent variable x（student population）on the horizontal axis and the dependent variable y（quarterly sales）on the vertical axis．

（a）The \qquad enables us to observe the data graphically and to draw preliminary conclusions about the possible relationship between the vari－ ables．
（b）Quarterly sales appear to be higher at campuses with larger student popula－ tions．
（c）In addition，for these data the relationship between the size of the student pop－ ulation and quarterly sales appears to be approximated by a \qquad
（d） A \qquad relationship is indicated between x and y ．
（e）We therefore choose the \qquad model to represent the relationship between quarterly sales and student population．
（f）Next task is to use the sample data in Table 14.1 to determine the values of b_{0} and b_{1} in the estimated simple linear regression equation．

4．For the i th restaurant，the estimated regression equation provides
where
－\hat{y}_{i} ：predicted value of quarterly sales $(\$ 1000 \mathrm{~s})$ for the i th restaurant
－b_{0} ：the \qquad of the estimated regression line
－b_{1} ：the \qquad of the estimated regression line
－x_{i} ：size of the student population（1000s）for the i th restaurant
5．In simple linear regression，each observation \qquad consists of two values：one for the independent variable and one for the dependent variable．

6．Every restaurant in the sample will have an observed value of sales y_{i} and a predicted value of sales \hat{y}_{i} ．

7．For the estimated regression line to provide a good fit to the data，we want the differ－ ences between the observed sales values and the predicted sales values \qquad ．

8．（the least squares method）The least squares method uses the sample data to provide the values of b_{0} and b_{1} that \qquad the \qquad of the \qquad between the observed values of the dependent variable y_{i} and the predicted values of the dependent variable \hat{y}_{i} ．

9．Least Squares Criterion

$$
\begin{equation*}
\min \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \tag{14.5}
\end{equation*}
$$

where
－y_{i} ： \qquad of the dependent variable for the i th observation
－\hat{y}_{i} ： \qquad of the dependent variable for the i th observation

10．Slope and Y－Intercept for the Estimated Regression Equation Differential calculus can be used to show（see Appendix 14．1）that the values of b_{0} and b_{1} that minimize expression（14．5）can be found by：

$$
\begin{align*}
& b_{1}= \\
& b_{0}= \tag{14.7}\\
& (14.7)
\end{align*}
$$

$$
工
$$

where
－x_{i} ：value of the independent variable for the i th observation
－y_{i} ：value of the dependent variable for the i th observation
－ \bar{x} ：mean value for the independent variable
－ \bar{y} ：mean value for the dependent variable
－n ：total number of observations

補充說明：

Question

 （p660）Using data in Table 14.2 to calculate the slope and intercept of the estimated regression equation for Armand＇s Pizza Parlors example．
sol：

$$
\begin{aligned}
\bar{x} & =\frac{\sum x_{i}}{n}=\frac{140}{10}=14, \quad \bar{y}=\frac{\sum y_{i}}{n}=\frac{1300}{10}=130 \\
b_{1} & =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{2840}{568}=5 \\
b_{0} & =\bar{y}-b_{1} \bar{x}=130-5(14)=60
\end{aligned}
$$

Thus，the estimated regression equation is \qquad ．

TABLE 14.2	Calculations for the Least Squares Estimated Regression Equation for Armand＇s Pizza Parlors					
Restaurant i	$\mathrm{x}_{\boldsymbol{i}}$	y_{i}	$\boldsymbol{x}_{\boldsymbol{i}}-\overline{\mathrm{x}}$	$y_{i}-\bar{y}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
1	2	58	－12	－72	864	144
2	6	105	－8	－25	200	64
3	8	88	－6	－42	252	36
4	8	118	－6	－12	72	36
5	12	117	－2	－13	26	4
6	16	137	2	7	14	4
7	20	157	6	27	162	36
8	20	169	6	39	234	36
9	22	149	8	19	152	64
10	26	202	12	72	864	144
Totals	140	1300			2840	568
	Σx_{i}	Σy_{i}			$\Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\Sigma\left(x_{i}-\bar{x}\right)^{2}$

11．（Figure 14．4）The graph of this equation on the scatter diagram．

（a）The slope of the estimated regression equation \qquad ，im－ plying that as student population increases，sales increase．
（b）We can conclude（based on sales measured in $\$ 1000$ s and student population in 1000s）that an \qquad in the student population of 1000 is associ－ ated with an \qquad of $\$ 5000$ in \qquad sales；that is， quarterly sales are expected to increase by $\$ 5$ per student．

12．If we wanted to predict quarterly sales for a restaurant to be located near a campus with 16,000 students，we would compute

$$
\hat{y}=
$$

\qquad
Hence，we would predict quarterly sales of $\$ 140,000$ for this restaurant．
13．This least squares criterion is used to choose the equation that provides the \qquad ．

14．If some other criterion were used，such as minimizing the sum of the \qquad between y_{i} and \hat{y}_{i} ，a different equation would be obtained．In practice，the least squares method is the \qquad ．

14．3 Coefficient of Determination

1．How well does the estimated regression equation fit the data？The \qquad provides a measure of the \qquad for the estimated regression equation．

2．（residual）For the i th observation，the difference between the observed value of the dependent variable， \qquad ，and the predicted value of the dependent variable，
\qquad ，is called the i th residual．The i th residual represents the error in using \hat{y}_{i} to estimate y_{i} ．Thus，for the i th observation，the residual is \qquad ．

3．（Sum of Squares Due to Error）The sum of squares of these residuals or errors is the quantity that is minimized by the least squares method．This quantity，also known as the sum of squares due to error，is denoted by \qquad ：

$$
\begin{equation*}
S S E= \tag{14.8}
\end{equation*}
$$

\qquad

4．（Table 14．3）The value of $S S E$ is a measure of the error in using the estimated regression equation to predict the values of the dependent variable in the sample． $S S E=1530$ measures the error in using the estimated regression equation $\hat{y}=$ $60+5 x$ to predict sales．

TABLE 14．3 Calculation of SSE for Armand＇s Pizza Parlors

Restaurant i	$x_{i}=$ Student Population （1000s）	$y_{i}=\text { Quarterly }$ Sales (\$1000s)	Predicted Sales $\hat{y}_{i}=60+5 x_{i}$	Error $y_{i}-\hat{y}_{i}$	Squared Error $\left(y_{i}-\hat{y}_{i}\right)^{2}$
1	2	58	70	－12	144
2	6	105	90	15	225
3	8	88	100	－12	144
4	8	118	100	18	324
5	12	117	120	－3	9
6	16	137	140	－3	9
7	20	157	160	－3	9
8	20	169	160	9	81
9	22	149	170	－21	441
10	26	202	190	12	144
				SSE $=\overline{1530}$	

5．Now suppose we are asked to develop an estimate of quarterly sales \qquad knowledge of the size of the student population．Without knowledge of any related variables，we would use the \qquad as an estimate of quarterly sales at any given restaurant．

6．（Table 14．4）（Total Sum of Squares）We show the sum of squared deviations obtained by using the \qquad to predict the value of quarterly sales for each restaurant in the sample．For the i th restaurant in the sample，the difference \qquad provides a measure of the error involved in using \bar{y} to predict sales．The corresponding sum of squares，called the total sum of squares，is denoted
\qquad ．

$$
\begin{equation*}
S S T= \tag{14.9}
\end{equation*}
$$

TABLE 14．4 Computation of the Total Sum of Squares for Armand＇s Pizza Parlors

Restaurant i	$x_{i}=\text { Student }$ Population （1000s）	$y_{i}=\text { Quarterly }$ Sales （\＄1000s）	Deviation $y_{i}-\bar{y}$	Squared $\left(y_{i}-\bar{y}\right)^{2}$
1	2	58	－72	5184
2	6	105	－25	625
3	8	88	－42	1764
4	8	118	－12	144
5	12	117	－13	169
6	16	137	7	49
7	20	157	27	729
8	20	169	39	1521
9	22	149	19	361
10	26	202	72	5184
SST $=\overline{15,730}$				

7．（Figure 14．5）

> | FIGURE 14.5 | $\begin{array}{l}\text { Deviations About the Estimated Regression Line and the Line } \\ y=\bar{y} \text { for Armand's Pizza Parlors }\end{array}$ |
| :--- | :--- |

8．We can think of \qquad as a measure of how well the observations cluster about
the \qquad and $S S E$ as a measure of how well the observations cluster about the \qquad ．

9．（Sum of Squares Due to Regression）the sum of squares due to regression，is denoted \qquad ，measures how much the \hat{y} values on the estimated regression line deviate from \bar{y} ：

$$
\begin{equation*}
S S R= \tag{14.10}
\end{equation*}
$$

\qquad

10．（Relationship Among $S S T, S S R$ ，and $S S E$ ）From the preceding discussion，we should expect that $S S T, S S R$ ，and $S S E$ are related．
where
－SST：total sum of squares
－$S S R$ ：sum of squares due to regression
－$S S E$ ：sum of squares due to error
11．$S S R$ can be thought of as the \qquad portion of $S S T$ ，and $S S E$ can be thought of as the \qquad portion of $S S T$ ．

12．Example Armand＇s Pizza Parlors example
we already know that $S S E=1530$ and $S S T=15,730$ ；therefore，solving for $S S R$ in equation（14．11），we find that the sum of squares due to regression is

$$
S S R=\ldots=15,730-1530=14,200
$$

13．How the three sums of squares，$S S T, S S R$ ，and $S S E$ ，can be used to provide a measure of the goodness of fit for the estimated regression equation？
（a）The estimated regression equation would provide a perfect fit if every value of the dependent variable y_{i} happened to lie on the estimated regression line．
（b）In this case， \qquad would be zero for each observation，resulting in \qquad ．
（c）Because $S S T=S S R+S S E$ ，we see that for a perfect fit $S S R$ must equal $S S T$ ，and the ratio（ \qquad ）must equal one．
（d）Poorer fits will result in larger values for $S S E$ ．Hence the poorest fit occurs when \qquad and \qquad ．

14．（Coefficient of Determination）The ratio $S S R / S S T$ ，which will take values between zero and one，is used to evaluate the goodness of fit for the estimated regression equation．This ratio is called the coefficient of determination and is denoted by（ \qquad ）（Other textbook： \qquad ）．

$$
\begin{equation*}
r^{2}= \tag{14.12}
\end{equation*}
$$

\qquad
15．When we express the coefficient of determination as a percentage，r^{2} can be inter－ preted as the \qquad of the total sum of squares that can be explained by using \qquad ．

16．Example Armand＇s Pizza Parlors example
（a）The value of the coefficient of determination is

$$
r^{2}=\frac{S S R}{S S T}=\frac{14,200}{15,730}=0.9027
$$

（b）For Armand＇s Pizza Parlors，we can conclude that 90.27% of the total sum of squares can be explained by using the estimated regression equation $\underline{\hat{y}=60+5 x \text { to predict quar }}$
（c）In other words， \qquad can be explained by the linear relationship between the size of the student population and sales．We should be pleased to find such a good fit for the estimated regression equation．

Correlation Coefficient

1．In Chapter 3 we introduced the correlation coefficient as a descriptive measure of the strength of linear association between two variables，x and y ．Values of the correlation coefficient are always between \qquad ．

2．A value of +1 indicates that the two variables x and y are \qquad in a \qquad linear sense．A value of -1 indicates that x and y are perfectly related in a \qquad linear sense，with all data points on a straight line that has a negative slope．Values of the correlation coefficient close to zero indicate that x and y are \qquad ．

3．（Sample Correlation Coefficient）If a regression analysis has already been per－ formed and the coefficient of determination r^{2} computed，the sample correlation coefficient can be computed：
$r_{x y}=$ \qquad $=$
where b_{1} is the slope of the estimated regression equation $\hat{y}=b_{0}+b_{1} x$
補充說明：Show that the coefficient of determination of a simple linear regression is the square of the sample correlation coefficient of $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ ．

4．Example Armand＇s Pizza Parlor example
the value of the coefficient of determination corresponding to the estimated regres－ sion equation $\hat{y}=60+5 x$ is 0.9027 ．Because the slope of the estimated regression equation is positive，equation（14．13）shows that the sample correlation coefficient is $+\sqrt{0.9027}=+0.9501$ ．（a strong positive linear association exists between x and y．）

5．In the case of a \qquad between two variables，both the coefficient of determination and the sample correlation coefficient provide measures of the strength of the relationship．The coefficient of determination provides a measure between zero and one，whereas the sample correlation coefficient provides a measure between -1 and +1 ．

6．Although the sample correlation coefficient is restricted to a linear relationship be－ tween two variables，the coefficient of determination can be used for \qquad relationships and for relationships that have \qquad ．
Thus，the coefficient of determination provides a wider range of applicability．

（補充）limitations of R^{2} ：three common misunderstandings

Source ：Michael H．Kutner et al．（2019），Applied Linear Statistical Models：Applied Linear Regression Models，Mcgraw－Hill Inc．，（5th edition）

1．Misanderstanding 1：A high R^{2} indicates that \qquad can be made．（not necessarily correct）
（a）（Toluca Company Example）the coefficient of determination was high $\left(R^{2}=\right.$ 0．82）．Yet the 90 percent prediction interval for the next lot，consisting of 100 units，was wide（332 to 507 hours）and not precise enough to permit management to schedule workers effectively．
（b）Misunderstanding 1 arises because R^{2} measures only a \qquad from SST and provides no information about absolute precision for estimating a mean response or predicting a new observation．

2．Misunderstanding 2：A high R^{2} indicates that the estimated regression line is a
\qquad ．（not necessarily correct）
（a）（Figure 2．9a）a scatter plot where R^{2} is high $\left(R^{2}=0.69\right)$ ．Yet a linear regres－ sion function would not be a good fit since the regression relation is curvilinear．

3．Misunderstanding 3：A R^{2} near zero indicates that X and Y are not related． （not necessarily correct）．
（a）（Figure 2．9b）a scatter plot where R^{2} between X and Y is $R^{2}=0.02$ ．Yet X and Y are strongly related；however，the relationship between the two variables is curvilinear．
（b）Misunderstandings 2 and 3 arise because R^{2} measures the degree of \qquad between X and Y ，whereas the actual regression relation may be curvilinear．

FIGURE 2.9
Illustrations of Two Misun－ derstandings about Coefficient of Determination．
（a）
Scatter Plot with $R^{2}=.69$ Linear regression is not a good fit

（b）
Scatter Plot with $R^{2}=.02$ Strong relation between X and Y

14．4 Model Assumptions

1．In conducting a regression analysis，we begin by making an assumption about the appropriate model for the relationship between the dependent and independent variable（s）．

2．For the case of simple linear regression，the assumed regression model is

3．Then the least squares method is used to develop values for b_{0} and b_{1} ，the estimates of the model parameters β_{0} and β_{1} ，respectively．The resulting estimated regression equation is

Even with a large value of r^{2} ，the estimated regression equation should not be used until further analysis of the appropriateness of the assumed model has been conducted．

4．An important step in determining whether the assumed model is appropriate in－ volves \qquad of the relationship．The tests of significance in regression analysis are based on the following assumptions about the error term ϵ ．

5．Assumptions About The Error Term ϵ in the Regression Model

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

（a）The error term ϵ is a random variable with a mean or expected value of zero； that is， \qquad ．

Implication：β_{0} and β_{1} are constants，thus，for a given value of x ，the expected value of y is

As we indicated previously，equation（14．14）is referred to as the regression equation．
（b）The variance of ϵ ，denoted by \qquad ，is the same for all values of x ．

Implication：The variance of y about the regression line equals σ^{2} and is the same for \qquad ．
（c）The values of ϵ are \qquad ．

Implication：The value of ϵ for a particular value of x is not related to the value of ϵ for any other value of x ；thus，the value of y for a particular value of x is not related to the value of y for any other value of x ．
（d）The error term ϵ is a \qquad r．v．for all values of x ．

Implication：Because y is a linear function of ϵ, y is also a normally distributed random variable for all values of x ．

6．Figure 14.6 illustrates the model assumptions and their implications；note that in this graphical interpretation，the value of \qquad changes according to the specific value of x considered．However，regardless of the x value，the probability distribution of ϵ and hence the probability distributions of y are \qquad distributed，each with the \qquad ．

FIGURE 14．6 Assumptions for the Regression Model

7．The specific value of the error ϵ at any particular point depends on whether the actual value of \qquad is greater than or less than \qquad ．

8．We assume that a straight line represented by \qquad is the basis for the relationship between the variables．

14．5 Testing for Significance

1．In a simple linear regression equation，the mean or expected value of y is a linear function of $x: E(y)=\beta_{0}+\beta_{1} x$ ．If the value of \qquad ，the mean value of y does not depend on the value of x and hence we would conclude that x and y are
\qquad －

2．To test for a significant regression relationship，we must conduct a hypothesis test to determine whether the value of \qquad ．

3．Two tests are commonly used．Both require an estimate of \qquad ，the variance of ϵ in the regression model．

Estimate of σ^{2}

1．From the regression model and its assumptions we can conclude that σ^{2} ，the variance of ϵ ，also represents the variance of the y values about the regression line．

2．Thus， \qquad ，the sum of squared residuals，is a measure of the variability of the actual observations about the estimated regression line．

$$
S S E=
$$

3．Statisticians have shown that $S S E$ has \qquad degrees of freedom because two parameters（ β_{0} and β_{1} ）must be estimated to compute $S S E$ ．

4．The \qquad provides the estimate of σ^{2} ；it is $S S E$ divided by its degrees of freedom．

5．Mean Square Error（Estimate of σ^{2} ）

$$
\begin{equation*}
s^{2}=M S E= \tag{14.15}
\end{equation*}
$$

6．Standard Error of the Estimate

$$
\begin{equation*}
s=\sqrt{M S E}=\sqrt{\frac{S S E}{n-2}} \tag{14.16}
\end{equation*}
$$

7．Example Armand＇s Pizza Parlors example

$$
s^{2}=M S E=\frac{1530}{8}=191.25
$$

provides an unbiased estimate of σ^{2} ．

$$
s=\sqrt{M S E}=\sqrt{191.25}=13.829
$$

t Test

1．The purpose of the t test is to see whether we can conclude that $\beta_{1} \neq 0$ ．We will use the sample data to test the following hypotheses about the parameter β_{1} ．

2．If H_{0} is rejected，we will conclude that $\beta_{1} \neq 0$ and that a \qquad relationship exists between the two variables．

3．If H_{0} cannot be rejected，we will have \qquad to conclude that a significant relationship exists．

4．The properties of the \qquad of β_{1} ，the least squares estimator of b_{1} ，provide the basis for the hypothesis test．

5．Sampling Distribution of b_{1}
－Expected Value： \qquad
－Standard Deviation：
（証明）：
－Distribution Form： \qquad
6．Because we do not know the value of σ ，we develop an estimate of $\sigma_{b_{1}}$ ，denoted $s_{b_{1}}$ ， by estimating σ with s in equation（14．17）．Thus，we obtain the following estimate of $\sigma_{b_{1}}$ ．

7．Estimated Standard Deviation of b_{1}

$$
\begin{equation*}
s_{b_{1}}= \tag{14.18}
\end{equation*}
$$

8．The standard deviation of b_{1} is also referred to as the standard error of b_{1} ．Thus， $s_{b_{1}}$ provides an estimate of the standard error of b_{1} ．

9．The t test for a significant relationship is based on the fact that the test statistic
follows a \qquad distribution with \qquad degrees of freedom．If the null hypoth－ esis is true，then \qquad and \qquad ．

10．t Test for Significance in Simple Linear Regression

（a）Hypothesis：

$$
\begin{equation*}
H_{0}: \beta_{1}=0, \quad H_{a}: \beta_{1} \neq 0 \tag{14.19}
\end{equation*}
$$

（b）Test Statistic：
（c）Rejection Rule：
i．p－value approach：Reject H_{0} if p－value $\leq \alpha$
ii．Critical value approach：Reject H_{0} if \qquad or if \qquad where $t_{\alpha / 2}$ is based on a t distribution with $n-2$ degrees of freedom．

Question （p678）

Conduct t test of significance for Armand＇s Pizza Parlors at the $\alpha=0.01$ level of significance．
sol：

1．Hypothesis： \qquad ．
2．Level of significance： \qquad ．

3．Test statistic（under H_{0} ）：
4．Decision rule
（a）Reject H_{0} if \qquad ，or
（b）Reject H_{0} if \qquad ．（Table 2 of Appendix D， upper tail of the t distribution）

5．Decision：
（a） \qquad
（b） \qquad －

6．Conclusion： \qquad ．

Confidence Interval for β_{1}

1．The form of a confidence interval for β_{1} is as follows：
（証明：）

2．The point estimator is \qquad and the margin of error is \qquad ．

3．Develop a 99% confidence interval estimate of b_{1} for Armand＇s Pizza Parlors．From Table 2 of Appendix B we find $t_{0.005,8}=3.355$ ．Thus，the 99% confidence interval estimate of b_{1} is

$$
b_{1} \pm t_{\alpha / 2, n-2} s_{b_{1}}=\square=5 \pm 1.95
$$

or 3.05 to 6.95 ．
4．At the $\alpha=0.01$ level of significance，we can use the 99% confidence interval as an \qquad for drawing the hypothesis testing conclusion for the Armand＇s data．

5．Because 0 ，the hypothesized value of b_{1} ，is \qquad in the confidence inter－ val（3．05 to 6．95），we can \qquad and conclude that a significant statistical relationship exists between the size of the student population and quarterly sales．

6．In general，a confidence interval can be used to test any \qquad about β_{1} ．If the hypothesized value of β_{1} is \qquad in the confidence interval， do not reject H_{0} ．Otherwise，reject H_{0} ．

F Test

1．Recall： \qquad ， \qquad ， \qquad
2．An F test，based on the F probability distribution，can also be used to test for significance in regression．With only \qquad ，the F test will provide the same conclusion as the t test．

3．But with more than one independent variable，only the F test can be used to test for an \qquad relationship．

4．If the null hypothesis $H_{0}: \beta_{1}=0$ is true，the mean square due to regression
\qquad ），and is denoted \qquad ．In general，

$$
M S R=
$$

5．The regression degrees of freedom is always equal to the variables in the model．Because we consider only regression models with one inde－ pendent variable in this chapter，we have \qquad ．
（証明：）

6．If the null hypothesis $\left(H_{0}: \beta_{1}=0\right)$ is true， \qquad and \qquad are two inde－ pendent estimates of σ^{2} and the sampling distribution of \qquad follows an F distribution with numerator degrees of freedom equal to one and denominator degrees of freedom equal to $n-2$ ．Therefore，when $\beta_{1}=0$ ，the value of $M S R / M S E$ should be close to \qquad ．

7．If the null hypothesis is false $\left(\beta_{1} \neq 0\right), M S R$ will \qquad σ^{2} and the value of $M S R / M S E$ will be \qquad ；thus，large values of $M S R / M S E$ lead to the rejection of H_{0} and the conclusion that the relationship between x and y is statistically significant．

$$
\begin{aligned}
M S E & =\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}=\frac{S S E}{n-2}, \quad M S R=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{1}=\frac{S S R}{1} . \\
E(M S E) & =-\quad E(M S R)=
\end{aligned}
$$

（証明：）

8．If H_{0} is false，$M S E$ still provides an unbiased estimate of σ^{2} and $M S R$ overestimates σ^{2} ．If H_{0} is true，both $M S E$ and $M S R$ provide unbiased estimates of σ^{2} ；in this case the value of $M S R / M S E$ should be close to 1 ．

9．F Test for Significance in Simple Linear Regression

（a）Hypothesis：$H_{0}: \beta_{1}=0, \quad H_{a}: \beta_{1} \neq 0$
（b）Test Statistic：$F=\frac{M S R}{M S E}$
（c）Rejection Rule：
i．p－value approach：Reject H_{0} if p－value $\leq \alpha$
ii．Critical value approach：Reject H_{0} if \qquad where F_{α} is based on an F distribution with 1 degree of freedom in the nu－ merator and $n-2$ degrees of freedom in the denominator．

10．Decision and Conclusion．

Question ．．
Conduct the F test for the Armand＇s Pizza Parlors example．$(\alpha=0.01)$ sol：

10．A similar ANOVA table can be used to summarize the results of the F test for significance in regression．

11．（Table 14．5）

TABLE 14．5 General Form of the Anova Table for Simple Linear Regression

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	p－value
Regression	SSR	1	MSR $=\frac{\text { SSR }}{1}$	$F=\frac{\text { MSR }}{\text { MSE }}$	

12．（Table 14．6）ANOVA table with the F test computations performed for Armand＇s Pizza Parlors．

TABLE 14．6 Anova Table for the Armand＇s Pizza Parlors Problem

| Source
 of Variation | Sum
 of Squares | Degrees
 of Freedom | Mean
 Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: |\quad p－value

Some Cautions About the Interpretation of Significance Tests

1．Rejecting the null hypothesis $H_{0}: \beta_{1}=0$ and concluding that the relationship be－ tween x and y is significant does not enable us to conclude that a \qquad relationship is present between x and y ．

2．Concluding a cause－and－effect relationship is warranted only if the analyst can provide some type of \qquad that the relationship is in fact
\qquad ．

3．In the Armand＇s Pizza Parlors example，we can conclude that there is a significant relationship between the size of the student population x and quarterly sales y ； moreover，the estimated regression equation $\hat{y}=60+5 x$ provides the least squares estimate of the relationship．We cannot，however，conclude that \qquad student population x \qquad in quarterly sales y just because we iden－ tified a statistically significant relationship．

4．Armand＇s managers felt that increases in the student population were a \qquad of increased quarterly sales．Thus，the result of the significance test enabled them to conclude that a cause－and－effect relationship was present．

5．We can state only that x and y are related and that a linear relationship explains a significant portion of the variability in y over the range of values for x observed in the sample．

6．（Figure 14．7）illustrates this situation．The test for significance calls for the rejection of the null hypothesis $H_{0}: \beta_{1}=0$ and leads to the conclusion that x and y are
significantly related，but the figure shows that the actual relationship between x and y is not linear．

FIGURE 14.7 Example of a Linear Approximation of a Nonlinear Relationship

7．Although the linear approximation provided by $\hat{y}=b_{0}+b_{1} x$ is good over the range of x values observed in the sample，it becomes poor for x values \qquad ．

8．Given a significant relationship，we should feel confident in using the estimated regression equation for predictions corresponding to x values \qquad of the x values observed in the sample．

9．For Armand＇s Pizza Parlors，this range corresponds to values of x \qquad ．
Unless other reasons indicate that the model is valid beyond this range，predictions outside the range of the independent variable should be made \qquad ．

14．6 Using the Estimated Regression Equation for Estimation and Prediction

1．When using the simple linear regression model，we are making an \qquad about the relationship between x and y ．We then use the \qquad method to obtain the estimated simple linear regression equation．

2．If a \qquad relationship exists between x and y and the \qquad
\qquad shows that the fit is good，the estimated regression equation should be useful for estimation and prediction．

3．Example Armand＇s Pizza Parlors example
（a）The estimated regression equation is $\hat{y}=60+5 x . \hat{y}$ can be used as a point estimator of \qquad ，the mean or expected value of y for a given value of x ，and as a predictor of an individual value of \qquad －
（b）For example，a point estimate of the mean quarterly sales for all restaurant locations near campuses with $x=10$（ 10,000 students）students is

$$
\hat{y}=\ldots(\$ 110,000)
$$

In this case we are using \hat{y} as the \qquad of the mean value of y when $x=10$ ．
（c）For example，to predict quarterly sales for a new restaurant Armand＇s is con－ sidering building near Talbot College，a campus with 10,000 students，we would compute

$$
\hat{y}=
$$

\qquad
Hence，we would predict quarterly sales of $\$ 110,000$ for such a new restaurant． In this case，we are using \hat{y} as the \qquad of y for a new observation when $x=10$ ．

4．Notations：
（a） \qquad $=$ the given value of the independent variable x
（b） \qquad $=$ the random variable denoting the possible values of the dependent variable y when $x=x^{*}$
（c）$\quad=$ the mean or expected value of the dependent variable y when $x=x^{*}$
（d） \qquad $=$ the point estimator of $E\left(y^{*}\right)$ and the predictor of an individual value of y^{*} when $x=x^{*}$

5．Example Armand＇s Pizza Parlors example
（a）To illustrate the use of this notation，suppose we want to estimate the mean value of quarterly sales for all Armand＇s restaurants located near a campus with 10,000 students．
（b）For this case， \qquad and \qquad denotes the unknown mean value of quarterly sales for all restaurants where $x^{*}=10$ ．
（c）Thus，the point estimate of $E\left(y^{*}\right)$ is provided by \qquad ， or $\$ 110,000$ ．
（d）But，using this notation，$\hat{y}^{*}=110$ is also the \qquad of quarterly sales for the new restaurant located near Talbot College，a school with 10，000 students．

Interval Estimation

1．Point estimators and predictors do not provide any information about the \qquad associated with the estimate and／or prediction．For that we must develop \qquad intervals and \qquad intervals．
（a）A confidence interval is an interval estimate of the \qquad for a given value of x ．
（b）A prediction interval is used whenever we want to predict an for a new observation corresponding to a given value of x ．

2．Although the predictor of y for a given value of x is the same as the point estimator of the mean value of y for a given value of x ，the \qquad we obtain for the two cases are different．

3．The margin of error is \qquad for a prediction interval．

4．Prediction intervals resemble confidence intervals．However，they differ conceptu－ ally．A confidence interval represents an \qquad and is an interval that is intended to cover the value of the parameter．A prediction interval is a statement about the value to be taken by a \qquad ，the new observation $y_{\text {new }}^{*}$ ．

Confidence Interval for the Mean Value of y

1．In general，we cannot expect \hat{y}^{*} to equal $E\left(y^{*}\right)$ exactly．If we want to make an inference about how close \hat{y}^{*} is to the true mean value $E\left(y^{*}\right)$ ，we will have to estimate the variance of \hat{y}^{*} ．

2．The formula for estimating the variance of \hat{y}^{*} ，denoted by \qquad ，is

$$
\begin{equation*}
s_{\hat{y}^{*}}^{2}= \tag{14.22}
\end{equation*}
$$

where $s^{2}=$ \qquad ．

3．The estimate of the standard deviation of \hat{y}^{*} is given by the square root of equation （14．22）．

$$
\begin{equation*}
s_{\hat{y}^{*}}=s \sqrt{\left[\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]} \tag{14.23}
\end{equation*}
$$

4．NOTE：

$$
\begin{aligned}
y_{i} & =\beta_{0}^{*}+\beta_{1}\left(x_{i}-\bar{x}\right)+\epsilon_{i}, \beta_{0}^{*}=\beta_{0}+\beta_{1} \bar{x} \quad \text { (alternative model) } \\
\hat{y}^{*} & =b_{0}^{*}+b_{1}\left(x^{*}-\bar{x}\right), b_{0}^{*}=b_{0}+b_{1} \bar{x}=\bar{y} \\
\hat{y}^{*} & =\bar{y}+b_{1}\left(x^{*}-\bar{x}\right) \\
E\left(\hat{y}^{*}\right) & =E\left(y^{*}\right) \\
\sigma_{\hat{y}^{*}}^{2}=\operatorname{Var}\left(\hat{y}^{*}\right) & =\operatorname{Var}\left(\bar{y}+b_{1}\left(x^{*}-\bar{x}\right)\right) \\
& =\operatorname{Var}(\bar{y})+\operatorname{Var}\left(b_{1}\left(x^{*}-\bar{x}\right)\right) \\
& =\frac{\sigma^{2}}{n}+\left(x^{*}-\bar{x}\right)^{2} \frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& =\sigma^{2}\left[\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] .
\end{aligned}
$$

5．Example Armand＇s Pizza Parlors
$s=13.829$ ．With $x^{*}=10, \bar{x}=14$ ，and $\sum\left(x_{i}-\bar{x}\right)^{2}=568$ ，we can use equation （14．23）to obtain

$$
s_{\hat{y}^{*}}=
$$

\qquad
6．Theorem：

$$
\frac{\hat{y}^{*}-E\left(y^{*}\right)}{s_{\hat{y}^{*}}} \sim t_{(n-2)}
$$

7．Confidence Interval for $E\left(y^{*}\right)$
where the confidence coefficient is $1-\alpha$ and $t_{\alpha / 2}$ is based on the t distribution with （ $n-2$ ）degrees of freedom．

8．Example Armand＇s Pizza Parlors
（a）Develop a 95% confidence interval of the mean quarterly sales for all Armand＇s restaurants located near campuses with 10，000 students．
（b）We have \qquad Thus，with \qquad and a margin of error of 110 ± 11.415 ．
（c）In dollars，the 95% confidence interval for the mean quarterly sales of all restaurants near campuses with 10,000 students is $\$ 110,000 \pm \$ 11,415$ ．There－ fore，the 95% confidence interval for the \qquad when the student population is 10,000 is \qquad ．

9．Note that the estimated standard deviation of \hat{y}^{*} given by equation（14．23）is small－ est when \qquad ．

10．In this case the estimated standard deviation of \hat{y}^{*} becomes

$$
s_{\hat{y}^{*}}=s \sqrt{\left[\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]}=
$$

\qquad
This result implies that we can make the best or most precise estimate of the mean value of y whenever $x^{*}=\bar{x}$ ．

11．（Figure 14．8）the further x^{*} is from \bar{x} ，the larger $x^{*}-\bar{x}$ becomes．As a result，the confidence interval for the mean value of y will become wider as x^{*} deviates more from \bar{x} ．

FIGURE 14．8 Confidence Intervals for the Mean Sales y at Given Values of Student Population x

Prediction Interval for an Individual Value of y

1．The predictor of y^{*} ，the value of y corresponding to the given x^{*} ，is $\hat{y}^{*}=\beta_{0}+\beta_{1} x^{*}$ ．
2．For the new restaurant located near Talbot College，$x^{*}=10$ and the prediction of quarterly sales is $\hat{y}^{*}=60+5(10)=110$ ，or $\$ 110,000$ ．Note that the predic－ tion of quarterly sales for the new Armand＇s restaurant near Talbot College is the
\qquad as the point estimate of the mean sales for all Armand＇s restaurants located near campuses with 10,000 students．

3．Determine the variance associated with using \hat{y}^{*} as a predictor of y when $x=x^{*}$ ． This variance is made up of the sum of the following two components．
（a）The（estimated）variance of the y^{*} values about the mean $E\left(y^{*}\right)$ ： \qquad ．
（b）The（estimated）variance associated with using \hat{y}^{*} to estimate $E\left(y^{*}\right)$ ： \qquad

4．The formula for estimating the variance corresponding to the prediction of the value of y when $x=x^{*}$ ，denoted $s_{p r e d}^{2}$ ，is

5．Theorem：

$$
\begin{aligned}
& \frac{\hat{y}^{*}-y_{n e w}^{*}}{s_{\text {pred }}} \sim t_{(n-2)} \\
\sigma_{\text {pred }}^{2} & =\operatorname{Var}\left(\hat{y}^{*}-y_{\text {new }}^{*}\right) \\
& =\operatorname{Var}\left(\hat{y}^{*}\right)+\operatorname{Var}\left(y_{\text {new }}^{*}\right) \\
& =\operatorname{Var}\left(\hat{y}^{*}\right)+\sigma^{2}
\end{aligned}
$$

FIGURE 2.5 Prediction of $\boldsymbol{Y}_{\boldsymbol{h} \text {（new）}}$ when Parameters Unknown．

6．（Armand＇s Pizza Parlors）the estimated standard deviation corresponding to the prediction of quarterly sales for a new restaurant located near Talbot College，a campus with 10,000 students，is computed as follows．

$$
s_{\text {pred }}=
$$

7．Prediction Interval For y^{*}
where the confidence coefficient is $1-\alpha$ and $t_{\alpha / 2}$ is based on the t distribution with $n-2$ degrees of freedom．

8．（Armand＇s Pizza Parlors）The 95% prediction interval for quarterly sales for the new Armand＇s restaurant located near Talbot College，with $\hat{y}^{*}=110$ and a margin of error of \qquad ，the 95% prediction interval is $110 \pm 33.875(\$ 76,125$ to $\$ 143,875)$ ．

9．Note that the prediction interval for the new restaurant located near Talbot Col－ lege，a campus with 10,000 students，is wider than the confidence interval for the mean quarterly sales of all restaurants located near campuses with 10,000 students． The difference reflects the fact that we are able to estimate the mean value of y
\qquad than we can predict an individual value of y ．

10．（Figure 14．9）Confidence intervals and prediction intervals are both more precise when the value of the independent variable x^{*} is closer to \bar{x} ．

FIGURE 14．9 Confidence and Prediction Intervals for Sales y at Given Values of Student Population x

14．7 Computer Solution

FIGURE 14．10 Output for the Armand＇s Pizza Parlors Problem

14．8 Residual Analysis：Validating Model Assump－ tions

1．Residual for observation i ：the difference between the observed value of the depen－ dent variable $\left(y_{i}\right)$ and the predicted value of the dependent variable $\left(\hat{y}_{i}\right)$ ， \qquad
2．An analysis of the corresponding residuals will help determine whether the assump－ tions made about the regression model are appropriate．

3．（Table 14．7）

TABLE 14．7 Residuals for Armand＇s Pizza Parlors

Student Population	Sales	Predicted Sales	Residuals
$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}$	$\hat{\boldsymbol{y}}_{\boldsymbol{i}}=\mathbf{6 0}+\mathbf{5} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}-\hat{\boldsymbol{y}}_{\boldsymbol{i}}$
2	58	70	-12
6	105	90	15
8	88	100	-12
8	118	100	18
12	117	120	-3
16	137	140	-3
20	157	160	-3
20	169	160	9
22	149	170	-21
26	202		12

4．Example Armand＇s Pizza Parlors
（a）A simple linear regression model was assumed．

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+\epsilon \tag{14.29}
\end{equation*}
$$

This model indicates that we assumed quarterly sales (y) to be a linear function of the size of the student population（ x ）plus an error term ϵ ．In Section 14.4 we made the following assumptions about the error term ϵ ．

1. \qquad ．

2．The variance of ϵ is the same for all values of x ． \qquad ．
3．The values of ϵ are \qquad ．
4．The error term ϵ has a \qquad ．
（b）These assumptions provide the theoretical basis for the \qquad and the
\qquad used to determine whether the relationship between x and y is significant，and for the \qquad estimates pre－ sented in Section 14．6．

5．If the assumptions about the error term ϵ appear \qquad ，the hypothesis tests about the significance of the regression relationship and the interval estimation results \qquad ．

6．Much of residual analysis is based on an examination of graphical plots：
（a）A plot of the \qquad against values of the independent variable \qquad ．
（b）A plot of \qquad against the \qquad of the dependent variable y
（c） A \qquad plot．
（d） A \qquad plot．

Residual Plot Against x

1．（Figure 14．12）
（a）Panel A：If the assumption that the \qquad is the same for all values of x and the assumed regression model is an adequate representation of the relationship between the variables，the residual plot should give an overall impression of a \qquad ．
（b）Panel B：if the \qquad is not the same for all values of x－for example，if variability about the regression line is greater for larger values of x ．
（c）Panel C：we would conclude that the assumed regression model is not an ade－ quate representation of the relationship between the variables．A \qquad regression model or \qquad regression model should be considered．

FIGURE 14．12 \quad Residual Plots from Three Regression Studies

2．（Figure 14．11）Example Armand＇s Pizza Parlors：

The residual plot does not provide evidence that the assumptions made for Ar－ mand＇s regression model should be challenged．At this point，we are confident in the conclusion that Armand＇s simple linear regression model is \qquad ．

3．Experience and good judgment are always factors in the effective interpretation of residual plots．

Residual Plot Against \hat{y}

1．Another residual plot represents the predicted value of the dependent variable \hat{y} on the horizontal axis and the residual values on the vertical axis．

2．（Figure 14．13）With the Armand＇s data from Table 14．7，

Note that the pattern of this residual plot is the same as the pattern of the residual plot against the independent variable x ．

3．For \qquad analysis，the residual plot against \hat{y} is more widely used because of the presence of more than one independent variable．

Standardized Residuals

1．A random variable is standardized by subtracting its mean and dividing the result by its standard deviation．

2．With the least squares method，the mean of the residuals is \qquad ．Thus，sim－ ply dividing each residual by its \qquad provides the standardized residual．

3．Standard Deviation of the i th Residual

$$
\begin{align*}
& s_{y_{i}-\hat{y}_{i}}= \tag{14.30}\\
& s_{y_{i}-\hat{y}_{i}}=\text { the standard deviation of residual } i \\
& s=\text { the standard error of the estimate } \\
& h_{i}=
\end{align*}
$$

4．Standardized Residual for Observation i

5．（Table 14．8）the standardized residuals for Armand＇s Pizza Parlors．

TABLE 14．8 Computation of Standardized Residuals for Armand＇s Pizza Parlors

Restaurant \boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}}$	$\left(\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}^{2}} \mathbf{2}^{\mathbf{2}}\right.$	$\frac{\left(\boldsymbol{x}_{\boldsymbol{i}}-\overline{\boldsymbol{x}}\right)^{\mathbf{2}}}{\boldsymbol{\Sigma (\boldsymbol { x } _ { \boldsymbol { i } } - \overline { \boldsymbol { x } }) ^ { \mathbf { 2 } }}}$	$\boldsymbol{h}_{\boldsymbol{i}}$	$\boldsymbol{s}_{\boldsymbol{y}_{\boldsymbol{i}}-\hat{\boldsymbol{y}}_{\mathbf{i}}}$	$\boldsymbol{y}_{\boldsymbol{i}}-\hat{\boldsymbol{y}}_{\boldsymbol{i}}$	Standardized Residual
1	2	-12	144	.2535	.3535	11.1193	-12	-1.0792
2	6	-8	64	.1127	.2127	12.2709	15	1.2224
3	8	-6	36	.0634	.1634	12.6493	-12	-.9487
4	8	-6	36	.0634	.1634	12.6493	18	1.4230
5	12	-2	4	.0070	.1070	13.0682	-3	-.2296
6	16	2	4	.0070	.1070	13.0682	-3	-.2296
7	20	6	36	.0634	.1634	12.6493	-3	-.2372
8	20	6	36	.0634	.1634	12.6493	9	.7115
9	22	8	64	.1127	.2127	12.2709	-21	-1.7114
10	26	12	144	.2535	.3535	11.1193	12	1.0792

Note：The values of the residuals were computed in Table 14．7．

6．（Figure 14．14）

7．The standardized residual plot can provide insight about the assumption that the er－ ror term ϵ has a \qquad ．If this assumption is satisfied，the distri－ bution of the standardized residuals should appear to come from a \qquad probability distribution．

8．Thus，when looking at a standardized residual plot，we should expect to see approx－ imately \qquad of the standardized residuals between \qquad ．

9．We see in Figure 14.14 that for the Armand＇s example all standardized residuals are between -2 and +2 ．Therefore，on the basis of the standardized residuals，this plot gives us no reason to question the assumption that ϵ has a normal distribution．

Normal Probability Plot

1．Another approach for determining the validity of the assumption that the error term has a normal distribution is the normal probability plot．

2．To show how a normal probability plot is developed，we introduce the concept of
\qquad －
（a）Suppose 10 values are selected randomly from a normal probability distri－ bution with a mean of zero and a standard deviation of one，and that the sampling process is repeated over and over with the values in each sample of 10
（b）The random variable representing the smallest value obtained in repeated sam－ pling is called the \qquad ．
（c）Statisticians show that for samples of size 10 from a standard normal proba－ bility distribution，the expected value of the first－order statistic is -1.55 ．This expected value is called a \qquad ．
NOTE：Compute the expected values of order statistics for a random sample from a standard normal distribution：evNormOrdStats \｛EnvStats\} https：／／search．r－project．org／CRAN／refmans／EnvStats／html／evNormOrdStats．html
（d）（Table 14．9）For the case with a sample of size $n=10$ ，there are 10 order statistics and 10 normal．

TABLE 14.9	
Normal Scores For $n=10$ Order Normal Statistic Score 1 -1.55 2 -1.00 3 -.65 4 -.37 5 -.12 6 .12 7 .37 8 .65 9 1.00 10 1.55	

TABLE 14.10
Normal Scores and Ordered Standardized
Residuals for Armand＇s
Pizza Parlors

Normal	Ordered Standardized
Scores	Residuals
-1.55	-1.7114
-1.00	-1.0792
-.65	-.9487
-.37	-.2372
-.12	-.2296
.12	-.2296
.37	.7115
.65	1.0792
1.00	1.2224
1.55	1.4230

> data.frame(p, qnorm(p))
p qnorm.p.
10.00000000 -Inf
$20.09090909-1.3351777$
$3 \quad 0.18181818-0.9084579$
$4 \quad 0.27272727-0.6045853$
$5 \quad 0.36363636-0.3487557$
$6 \quad 0.45454545-0.1141853$
$\begin{array}{lll}7 & 0.54545455 & 0.1141853\end{array}$
$\begin{array}{lll}8 & 0.63636364 & 0.3487557\end{array}$
$9 \quad 0.727272730 .6045853$
100.818181820 .9084579
$110.90909091 \quad 1.3351777$
12 1.00000000 Inf
（e）Let us now show how the 10 normal scores can be used to determine whether the standardized residuals for Armand＇s Pizza Parlors appear to come from a standard normal probability distribution．
（f）（Table 14．10）The 10 normal scores and the ordered standardized residuals are shown together in Table 14．10．If the normality assumption is satisfied，the smallest standardized residual should be close to the smallest normal score， the next smallest standardized residual should be close to the next smallest
normal score，and so on．
（g）A normal probability plot：a plot with the \qquad on the horizontal axis and the corresponding \qquad on the vertical axis．
（h）If the standardized residuals are approximately normally distributed，the plot－ ted points should cluster closely around a \qquad passing through the \qquad ．

3．（Figure14．15）the normal probability plot for the Armand＇s Pizza Parlors exam－ ple：conclude that the assumption of the error term having a normal probability distribution is reasonable．

4．Any substantial curvature in the normal probability plot is evidence that the resid－ uals have not come from a normal distribution．

14．9 Residual Analysis：Outliers and Influential Ob－ servations

Detecting Outliers

1．（Figure 14．16）is a scatter diagram for a data set that contains an \qquad ，a data point（observation）that does not fit the trend shown by the remaining data．

2．Outliers represent observations that are suspect and warrant careful examination． They may represent \qquad data；if so，the data should be \qquad ．

3．They may signal a violation of model assumptions；if so， \qquad should be considered．

4．Finally，they may simply be \qquad values that occurred by chance．In this case，they should be retained．

5．（Table 14．11）The process of detecting outliers：Except for observation $4\left(x_{4}=3\right.$ ， $y_{4}=75$ ），a pattern suggesting a negative linear relationship is apparent．Indeed， given the pattern of the rest of the data，we would expect y_{4} to be much smaller and hence would identify the corresponding observation as an outlier．

6．For the case of simple linear regression，one can often detect outliers by simply examining the \qquad。

7．The \qquad can also be used to identify outliers．If an obser－ vation deviates greatly from the pattern of the rest of the data，the corresponding standardized residual will be large in absolute value．

TABLE 14.11

Data Set Illustrating the Effect of an Outlier

$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}$
1	45
1	55
2	50
3	75
3	40
3	45
4	30
4	35
5	25
6	15

8．（Figure 14．18）the output from a regression analysis．The highlighted portion of the output shows that the standardized residual for observation 4 is 2.67 ．With normally distributed errors，standardized residuals should be outside the range of -2 to +2 approximately 5% of the time．

FIGURE 14．18 Output for Regression Analysis of the Outlier Data Set

Regression Equation
$y=64.96-7.33 x$

Observation	Predicted y	Residuals	Standard Residuals
1	57.6271	-12.6271	-1.0570
2	57.6271	-2.6271	-.2199
3	50.2966	-.2966	-.0248
4	42.9661	32.0339	2.6816
5	42.9661	-2.9661	-.2483
6	42.9661	2.0339	.1703
7	35.6356	-5.6356	-.4718
8	35.6356	-.6356	-.0532
9	28.3051	-3.3051	-.2767
10	20.9746	-5.9746	-.5001

9．In deciding how to handle an outlier，we should first check to see whether it is a
\qquad ．Perhaps an \qquad was made in initially recording the data or in entering the data into the computer file．

10．（Figure 14．19）For example，suppose that in checking the data for the outlier in Table 14．11，we find an error；the correct value for observation 4 is $x_{4}=3, y_{4}=30$ ． Figure 14.19 is a portion of the output obtained after correction of the value of y_{4} ． We see that using the incorrect data value substantially affected the goodness of fit．With the correct data，the value of \qquad increased from 49.68% to 83.8% and the value of \qquad decreased from 64.96 to 59．24．The \qquad of the line changed from -7.33 to -6.95 ．

FIGURE 14．19 Output for the Revised Outlier Data Set

11．The identification of the outlier enabled us to correct the data error and improve the regression results．

Detecting Influential Observations

1．（Figure 14．20）shows an example of an influential observation in simple linear re－ gression．

FIGURE 14．20 Data Set with an Influential Observation

The estimated regression line has a negative slope．However，if the influential ob－ servation were dropped from the data set，the slope of the estimated regression line would change from negative to positive and the y－intercept would be smaller． Clearly，this one observation is much more influential in determining the estimated regression line than any of the others．

2．Influential observations can be identified from a \qquad when only one independent variable is present．

3．An influential observation may be an \qquad （an observation with a y value that deviates substantially from the trend），it may correspond to an x value far away from its mean（e．g．，see Figure 14．20），or it may be caused by a combination of the two（a somewhat off－trend y value and a somewhat extreme x value）．

4．The presence of the influential observation in Figure 14．20，if valid，would suggest trying to obtain data on intermediate values of x to understand better the relation－ ship between x and y ．

5．Observations with \qquad for the independent variables are called high ．The influential observation in Figure 14.20 is a point with high
leverage．

6．The leverage of an observation is determined by how far the values of the indepen－ dent variables are from their \qquad ．

7．For the single－independent－variable case，the leverage of the i th observation，denoted h_{i} ，can be computed by using equation（14．33）．

$$
h_{i}=
$$

Definition and properties of leverages：
https：／／online．stat．psu．edu／stat501／lesson／11／11．2
8．From the formula，it is clear that the farther x_{i} is from its mean \bar{x} ，the higher the leverage of observation i ．

9．（Figure 14．21）a scatter diagram for the data set in Table 14．12，it is clear that observation $7(x=70, y=100)$ is an observation with an extreme value of x ． Hence，we would expect it to be identified as a point with high leverage：

$$
h_{7}=\quad=
$$

10．For the case of simple linear regression，observations have high leverage if $h_{i}>6 / n$ or 0.99 ，whichever is smaller．

11．For the data set in Table $14.12,6 / n=6 / 7=0.86$ ．Because $h_{7}=0.94>0.86$ ，we will identify observation 7 as an observation whose x value gives it large influence．

12．Influential observations that are caused by an interaction of large residuals and high leverage can be difficult to detect．Diagnostic procedures are available that take both into account in determining when an observation is influential．One such measure，called \qquad ，will be discussed in Chapter 15.

© EXERCISES

$14.2: 1,5,6$
$14.3: 15,19,20$
$14.5: 23,26,27,30$
14．6：32，36， 37
14.7 ：40， 41
$14.8: 45,47$
14.9 ：50， 52

SUP ：59， 67
＂不要畏懼失敗，你應該要擔心沒有機會堂試，但你有的是機會嘗試！＂
＂Don＇t fear failure．Be afraid of not having the chance，you have the chance！＂
—汽車總動員 3：閃電再起（Cars 3，2017）

統計學（二）

Anderson＇s Statistics for Business \＆Economics（14／E）

Chapter 15：Multiple Regression

上課時間地點：二 D56，商館 260206
授課教師：吳漢銘（國立政治大學統計學系副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

15．1 Multiple Regression Model

1．（Recall）that the variable being predicted or explained is called the \qquad variable and the variable being used to predict or explain the dependent variable is called the \qquad variable．

2．Multiple regression analysis is the study of how a dependent variable y is related to
\qquad variables．In the general case，we will use \qquad to denote the number of independent variables．

3．The concepts of a regression model and a regression equation introduced in the preceding chapter are \qquad in the multiple regression case．

4．Multiple regression model：The equation that describes how the dependent variable y is related to the independent variables $x_{1}, x_{2}, \cdots, x_{p}$ and an error term is called the multiple regression model．

5．In the multiple regression model，$\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$ are the \qquad and the error term ϵ is a \qquad ．y is a linear function of $x_{1}, x_{2}, \cdots, x_{p}$ plus the error term ϵ ．

6．The error term accounts for the \qquad in y that \qquad by the linear effect of the p independent variables．

7．（Multiple regression equation）：The equation that describes how the mean value of y is related to $x_{1}, x_{2}, \cdots, x_{p}$ is called the multiple regression equation．
under the assumption that the mean or expected value of ϵ is zero．
8．The estimated multiple regression equation：
where $b_{0}, b_{1}, b_{2}, \cdots, b_{p}$ are the estimates of $\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$ and \hat{y} is the predicted value of the dependent variable

9．（Figure 15．1）

FIGURE 15．1 The Estimation Process for Multiple Regression

15．2 Least Squares Method

1．The least squares method is used to develop the estimated multiple regression equa－ tion：
where y_{i} is observed value of the dependent variable for the i th observation，\hat{y}_{i} is predicted value of the dependent variable for the i th observation

2．In multiple regression，however，the presentation of the formulas for the regression coefficients $\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$ involves the use of \qquad and is beyond the scope of this text．

3．Therefore，in presenting multiple regression，we focus on how statistical software can be used to obtain the estimated regression equation and other information． The emphasis will be on how to \qquad the computer output rather than on how to make the multiple regression computations．

An Example：Butler Trucking Company

1．The Butler Trucking Company，an independent trucking company in southern Cal－ ifornia．

2．A major portion of Butler＇s business involves deliveries throughout its local area．To develop better work schedules，the managers want to predict the total daily travel time for their drivers．
（a）Initially the managers believed that the total daily travel time would be closely related to the number of miles traveled in making the daily deliveries．
（b）（Table 15．1）（Figure 15．2）A simple random sample of 10 driving assignments provided the data shown in Table 15.1 and the scatter diagram shown in Figure 15．2．

（c）After reviewing this scatter diagram，the managers hypothesized that the sim－ ple linear regression model $y=\beta_{0}+\beta_{1} x_{1}+\epsilon$ could be used to describe the relationship between the total travel time（y）and the number of miles traveled $\left(x_{1}\right)$ ．
（d）（Figure 15．3）we show statistical software output from applying simple linear regression to the data in Table 15．1．The estimated regression equation is
i．At the 0.05 level of significance，the F value of \qquad and its corre－ sponding p－value of \qquad indicate that the relationship is significant； that is，we can reject $H_{0}: \beta_{1}=0$ because the p－value is less than $\alpha=0.05$ ．
ii．Note that the same conclusion is obtained from the t value of \qquad and its associated p－value of \qquad ．
iii．Thus，we can conclude that the relationship between the total travel time and the number of miles traveled is \qquad ；longer travel times are associated with more miles traveled．

FIGURE 15.3 Output for Butler Trucking with One Independent Variable
Analysis of Variance

Source	DF	Adj SS	Adj MS	F－Value	P－Value
Regression	1	15.871	15.8713	15.81	.004
Error	8	8.029	1.0036		
Total	9	23.900			

Model Summary

S	R－sq	R－sq（adj）
1.00179	66.41%	62.21%

Coefficients

Term	Coef	SE Coef	T－Value	P－Value
Constant	1.27	1.40	.91	.390
Kilometers	.0424	.0107	3.98	.004

Regression Equation

```
Time = 1.27 + .0424 Kilometers
```

iv．With a coefficient of determination（expressed as a percentage）of \qquad ， we see that \qquad in travel time can be explained by the linear effect of the number of miles traveled．

3．（Table 15．2）The managers might want to consider adding a second independent variable（number of deliveries）to explain some of the remaining variability in the dependent variable．

TABLE 15.2	Data for Butler Trucking with Kilometers Traveled $\left(x_{1}\right)$ and Number of Deliveries $\left(x_{2}\right)$ as the Independent Variables		
Driving Assignment	$x_{1}=$ Kilometers Traveled	$\begin{aligned} & x_{2}=\text { Number } \\ & \text { of Deliveries } \end{aligned}$	$\begin{aligned} & y=\text { Travel Time } \\ & \text { (hours) } \end{aligned}$
1	160	4	9.3
2	80	3	4.8
3	160	4	8.9
4	160	2	6.5
5	80	2	4.2
6	128	2	6.2
7	120	3	7.4
8	104	4	6.0
9	144	3	7.6
10	144	2	6.1

4．（Figure 15．4）Computer output with both miles traveled（ x_{1} ）and number of deliver－ ies $\left(x_{2}\right)$ as independent variables is shown in Figure 15．4．The estimated regression equation is

$$
\begin{equation*}
\hat{y}= \tag{15.6}
\end{equation*}
$$

\qquad
FIGURE 15．4 Output for Butler Trucking with Two Independent Variables
Analysis of Variance

Source	DF	Adj SS	Adj MS	F－Value	P－Value
Regression	2	21.6006	10.8003	32.88	.000
Error	7	2.2994	.3285		
Total	9	23.900			

Model Summary

S	R－sq	R－sq（adj）
.573142	90.38%	87.63%

Coefficients

Term	Coef	SE Coef	T－Value	P－Value
Constant	-.869	.952	-.91	.392
Kilometers	.03821	.00618	6.18	.000
Deliveries	.923	.221	4.18	.004

Regression Equation
Time $=-.869+.03821$ Kilometers +0.923 Deliveries

Note on Interpretation of Coefficients

1．One observation can be made at this point about the relationship between the esti－ mated regression equation with only the miles traveled as an independent variable and the equation that includes the \qquad as a second indepen－ dent variable．

2．The value of \qquad is not the same in both cases．In simple linear regression， we interpret β_{1} as an estimate of the change in y for a \qquad in the independent variable．

3．In multiple regression analysis，we interpret each regression coefficient as follows：b_{i} represents an estimate of the \qquad corresponding to a \qquad
\qquad when all other independent variables are \qquad ．

4．Butler Trucking example
（a）$\beta_{1}=0.06113$ ，an estimate of the expected increase in travel time corresponding to an increase of one mile in the distance traveled when the number of deliveries is held constant is 0.06113 hours．
（b）$\beta_{2}=0.923$ ，an estimate of the expected increase in travel time corresponding to an increase of one delivery when the number of miles traveled is held constant is 0.923 hours．

15．3 Multiple Coefficient of Determination

1．In simple linear regression，we showed that the total sum of squares can be parti－ tioned into two components：the sum of squares due to regression and the sum of squares due to error．The same procedure applies to the sum of squares in multiple regression．
where
SST：total sum of squares $=$ \qquad ．
SSR：sum of squares due to regression $=$ \qquad
SSE：sum of squares due to error $=$ \qquad ．

2．Example Butler Trucking problem（Figure 15．4）$S S T=23.900, S S R=21.6006$ ， and $S S E=2.2994$ ．

3．With only one independent variable（number of miles traveled），the output in Figure 15.3 shows that $S S T=23.900, S S R=15.871$ ，and $S S E=8.029$ ．The value of SST is the same in both cases because it does not depend on \hat{y} ，but $S S R$ increases and $S S E$ decreases when a second independent variable（number of deliveries）is added．

4．The multiple coefficient of determination，denoted R^{2} ，measures the goodness of fit for the estimated multiple regression equation．

5．The multiple coefficient of determination can be interpreted as the \qquad in the dependent variable that can be explained by the estimated multiple regression equation．

6．Hence，when multiplied by 100 ，it can be interpreted as the percentage of the vari－ ability in y that can be explained \qquad ．

7．Example In the two－independent－variable Butler Trucking example，with $S S R=$ 21.6006 and $S S T=23.900$ ，we have $R^{2}=21.6006 / 23.900=0.9038$ ．

8．Therefore， 90.38% of the variability in travel time y is explained by the estimated multiple regression equation with miles traveled and number of deliveries as the independent variables．

9．（Figure 15．3）the R －sq value for the estimated regression equation with only one independent variable，number of miles traveled $\left(x_{1}\right)$ ，is 66.41% ．Thus，the percent－ age of the variability in travel times that is explained by the estimated regression equation increases from \qquad when number of deliveries is added as a second independent variable．

10．In general，R^{2} always increases as independent variables are added to the model．
11．Many analysts prefer adjusting R^{2} for the number of independent variables to avoid the impact of adding an independent variable on the amount of variability exlained by the estimated regression equation．

12．With n denoting the number of observations and p denoting the number of inde－ pendent variables，the adjusted multiple coefficient of determination is computed as follows：

13．Example With $n=10$ and $p=2$ ，we have

$$
R^{2}=1-(1-0.9038) \frac{10-1}{10-2-1}
$$

14．Thus，after adjusting for the two independent variables，we have an adjusted mul－ tiple coefficient of determination of 0.8763 ．This value（expressed as a percentage） is provided in the output in Figure 15.4 as \qquad －

15．If the value of R^{2} is small and the model contains a large number of independent variables，the adjusted coefficient of determination can take a \qquad ； in such cases，statistical software usually sets the adjusted coefficient of determina－ tion to \qquad ．

15．4 Model Assumptions

1．The multiple regression model：

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}+\epsilon \tag{15.10}
\end{equation*}
$$

2．The assumptions about the \qquad in the multiple regression model：
（1）The error term ϵ is a random variable with mean or expected value of zero； that is， \qquad ．

Implication：For given values of $x_{1}, x_{2}, \cdots, x_{p}$ ，the expected，or average，value of y is given by

$$
\begin{equation*}
E(y)= \tag{15.11}
\end{equation*}
$$

Equation（15．11）is the \qquad ．$E(y)$ represents the average of all possible values of y that might occur for the given values of $x_{1}, x_{2}, \cdots, x_{p}$.
（2）The variance of ϵ is denoted by σ^{2} and is the same for all values of the inde－ pendent variables $x_{1}, x_{2}, \cdots, x_{p}$ ；that is， \qquad
Implication：The variance of y about the regression line equals \qquad and is the same for all values of $x_{1}, x_{2}, \cdots, x_{p}$ ．
（3）The values of ϵ are \qquad ．
Implication：The value of ϵ for a particular set of values for the independent variables is not related to the value of ϵ for any other set of values．
（4）The error term ϵ is a \qquad random variable reflecting the deviation between the \qquad value and the \qquad given by $\beta_{0}+\beta_{1} x_{1}+$ $\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}$ ．

Implication：Because $\beta_{0}, \beta_{1}, \cdots, \beta_{p}$ are \qquad for the given values of $x_{1}, x_{2}, \cdots, x_{p}$ ，the dependent variable y is also a \qquad distributed random variable．

3．（Figure 15．5）Consider the following two－independent－variable multiple regression equation．

$$
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}
$$

FIGURE 15．5 Graph of the Regression Equation for Multiple Regression Analysis with Two Independent Variables

4．Note that the value of ϵ shown is the \qquad between the actual y value and the expected value of $y, E(y)$ ，when $x_{1}=x_{1}^{*}$ and $x_{2}=x_{2}^{*}$ ．

5．In regression analysis，the term response variable is often used in place of the term
\qquad ．Furthermore，since the multiple regression equation gen－ erates a plane or surface，its graph is called a \qquad ．

15．5 Testing for Significance

1．In simple linear regression，both \qquad and an \qquad provide the same conclusion；that is，if the null hypothesis is rejected，we conclude that \qquad ．

2．In multiple regression，the t test and the F test have different purposes．
（a）The F test is used to determine whether a significant relationship exists be－ tween the dependent variable and the set of \qquad the independent variables； we will refer to the F test as the test for \qquad －
（b）If the F test shows an overall significance，the \qquad is used to determine whether each of the individual independent variables is significant．A separate t test is conducted for each of the independent variables in the model；we refer to each of these t tests as a test for \qquad ．

3．In the material that follows，we will explain the F test and the t test and apply each to the Butler Trucking Company example．

F Test

1．The hypotheses for the F test involve the parameters of the multiple regression model．
H_{0} ：
H_{a} ：One or more of the parameters are not equal to zero

2．If H_{0} is rejected，the test gives us \qquad to conclude that one or more of the parameters are not equal to zero and that the between y and the set of independent variables $x_{1}, x_{2}, \cdots, x_{p}$ is \qquad ．

3．However，if H_{0} cannot be rejected，we do not have \qquad to con－ clude that a significant relationship is present．

4．（Review）（Chapter 14）
（a）A mean square is a \qquad divided by its corresponding degrees of freedom．
（b）In the multiple regression case，the total sum of squares（SST）has \qquad degrees of freedom，the sum of squares due to regression $(S S R)$ has degrees of freedom，and the sum of squares due to error（ $S S E$ ）has \qquad degrees of freedom．
（c）Hence，the mean square due to regression $(M S R)$ is \qquad and the mean square due to error $(M S E)$ is \qquad ．
（d）MSE provides an unbiased estimate of \qquad ，the variance of the error term ϵ ．
（e）If is true， \qquad also provides an unbi－ ased estimate of σ^{2} ，and the value of $M S R / M S E$ should be close to \qquad ．
（f）However，if H_{0} is false，$M S R$ \qquad σ^{2} and the value of $M S R / M S E$ becomes \qquad －

5．To determine how large the value of \qquad must be to reject H_{0} ，we make use of the fact that if \qquad and the \qquad about the multiple regression model are \qquad ，the sampling distribution of $M S R / M S E$ is an \qquad distribution with \qquad degrees of freedom in the numerator and
\qquad in the denominator．

6．F test for overall significance

（a）Hypothesis：

$$
H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0
$$

H_{a} ：One or more of the parameters are not equal to zero
（b）Test statistic：
（c）Rejection rule：
i．p－value approach：Reject H_{0} if \qquad ．
ii．Critical value approach：Reject H_{0} if \qquad

TABLE 15.3	ANOVA Table for a Multiple Regression Model with p Independent Variables			
Source	Sum of Squares	Degrees of Freedom	Mean Square	F
Regression	SSR	p	MSR $=\frac{\text { SSR }}{p}$	$F=\frac{\text { MSR }}{\text { MSE }}$
Error	SSE	$n-p-1$	$\text { MSE }=\frac{\text { SSE }}{n-p-1}$	
Total	SST	$n-1$		

7．Example Butler Trucking Company
（a）Hypotheses：

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2}=0 \\
& H_{a}: \beta_{1} \text { and/or } \beta_{2} \text { is not equal to zero }
\end{aligned}
$$

（b）（Figure 15．6）

FIGURE 15．6 Output for Butler Trucking with Two Independent Variables， Kilometers Traveled（ x_{1} ）and Number of Deliveries（ x_{2} ）

Analysis of Variance

Source	DF	Adj SS	Adj MS	F－Value	P－Value
Regression	2	21.6006	10.8003	32.88	.000
Error	7	2.2994	.3285		
Total	9	23.900			

Model Summary

S	R－sq	R－sq（adj）
.573142	90.38%	87.63%

Coefficients

Term	Coef	SE Coef	T－Value	P－Value
Constant	-.869	.952	-.91	.392
Kilometers	.03821	.00618	6.18	.000
Deliveries	.923	.221	4.18	.004

Regression Equation

$$
\text { Time }=-.869+.03821 \text { Kilometers }+.923 \text { Deliveries }
$$

（c）$M S R=10.8003$ and $M S E=0.3285, F=$ \qquad ．Using $\alpha=0.01$ ，
\qquad ．With $F=32.88>9.55$ ，we reject $H_{0}: \beta_{1}=\beta_{2}=0$ ．
（d）Using $\alpha=0.01$ ，the p－value $=0.000$ indicates that we can reject $H_{0}: \beta_{1}=$ $\beta_{2}=0$ because the p－value is less than $\alpha=0.01$ ．
（e）Conclude that a \qquad is present between travel time y and the two independent variables，miles traveled and number of deliveries．

t Test

1．If the F test shows that the multiple regression relationship is significant，a t test can be conducted to determine the significance of each of the \qquad pa－ rameters．

2．The t test for individual significance
（a）Hypothesis：For any parameter β_{i}

$$
\begin{aligned}
H_{0} & : \\
H_{a} & : \beta_{i} \neq 0
\end{aligned}
$$

（b）Test statistic：
（c）Rejection rule：
i．p－value approach：Reject H_{0} if p－value $\leq \alpha$ ．
ii．Critical value approach：Reject H_{0} if or if \qquad
3．In the test statistic，$s_{b_{i}}$ is the estimate of the standard deviation of b_{i} ．The value of $s_{b_{i}}$ will be provided by the computer software package．

補充：
The multiple regression model
or
（a）In the matrix notation：

$$
\text { or } \quad \mathbf{y}_{n \times 1}=\mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1}+\boldsymbol{\epsilon}_{n \times 1} \text {. }
$$

（b）Design matrix \mathbf{X} ：

$$
\mathbf{X}=
$$

（c）Use Least－squares to fit a regression line to the data $\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n}$ ，where $\mathbf{x}_{i}=$ $\left\{x_{i, 1}, x_{i, 2}, \cdots, x_{i, p-1}\right\}$

$$
\begin{aligned}
Q(\boldsymbol{\beta})= & (\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i} \boldsymbol{\beta}\right)^{2} \\
\frac{\partial Q}{\partial \boldsymbol{\beta}}= & -2 \mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\mathbf{0} \\
\Rightarrow & \left(\mathbf{X}^{\prime} \mathbf{X}\right) \boldsymbol{\beta}=\mathbf{X}^{\prime} \mathbf{y} \\
\Rightarrow & \hat{\boldsymbol{\beta}}=\mathbf{b}=
\end{aligned}
$$

（d）Variance of the sampling distribution of $b_{i}, i=1,2, \cdots, p$ ．

$$
\operatorname{Var}\left(b_{i}\right)=\frac{\sigma^{2}}{(n-1) S_{x_{i}}^{2}\left(1-R_{i}^{2}\right)}
$$

where $S_{x_{i}}^{2}$ is the sample variance of variable x_{i} and R_{i}^{2} is R－square of the regres－ sion of x_{i} on the rest of the explanatory variables of the models（including the constant term）．Note that the variance should be conditional on the observed values of the explanatory variables．

4．Example Butler Trucking Company
（a）（Figure 15．6）that shows the output for the t－ratio calculations：

$$
b_{1}=0.06113, b_{2}=0.923, s_{b_{1}}=0.00989, s_{b_{2}}=0.221
$$

（b）The test statistic for the hypotheses involving parameters β_{1} and β_{2} ：

$$
t=0.06113 / 0.00989=6.18, \quad t=0.923 / 0.221=4.18
$$

（c）Using $\alpha=0.01$ ，the p－values of \qquad and \qquad in the output indi－ cate that we can reject $H_{0}: \beta_{1}=0$ and $H_{0}: \beta_{2}=0$ ．Hence，both parameters are statistically significant．
（d）Alternatively， \qquad ．With $6.18>3.499$ ，we reject $H_{0}: \beta_{1}=0$ ． Similarly，with $4.18>3.499$ ，we reject $H_{0}: \beta_{2}=0$ ．

Multicollinearity

1．We use the term \qquad in regression analysis to refer to any variable being used to predict or explain the value of the dependent variable．

2．The term does not mean，however，that the independent variables \qquad are independent in any statistical sense．On the contrary，most independent vari－ ables in a multiple regression problem are \qquad to some degree with one another．

3．Example Butler Trucking Example
（a）Butler Trucking example involves the two independent variables x_{1}（miles trav－ eled）and x_{2}（number of deliveries），we could treat the miles traveled as the dependent variable and the number of deliveries as the independent variable to determine whether those two variables are themselves related．
（b）Compute the sample correlation coefficient $r\left(x_{1}, x_{2}\right)=0.16$ and find that some degree of linear association between the two independent variables．

4．In multiple regression analysis， \qquad refers to the correlation among the independent variables．

5．Example Modified Butler Trucking Example，the potential problems of multi－ collinearity．
（a）Consider a modification of the Butler Trucking example．Instead of x_{2} being the number of deliveries，let x_{2} denote the number of gallons of gasoline con－ sumed．Clearly，x_{1}（the miles traveled）and x_{2} are related；that is，we know that the number of gallons of gasoline used depends on the number of miles traveled．
（b）We would conclude logically that x_{1} and x_{2} are highly correlated independent variables．
（c）Assume that we obtain the equation $\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}$ and find that the F test shows the relationship to be significant．Then suppose we conduct a t test on β_{1} to determine whether $\beta_{1} \neq 0$ ，and we cannot reject $H_{0}: \beta_{1}=0$ ． Does this result mean that travel time is not related to miles traveled？Not necessarily．
（d）What it probably means is that with \qquad ，x_{1} does not make a significant contribution to determining the value of y ．
（e）This interpretation makes sense in our example；if we know the amount of gasoline consumed（ x_{2} ），we do not gain much additional information useful in predicting y by knowing the miles traveled $\left(x_{1}\right)$ ．
（f）Similarly，a t test might lead us to conclude $\beta_{2}=0$ on the grounds that，with x_{1} in the model，knowledge of the amount of gasoline consumed does not add much．

6．To summarize，in \qquad for the significance of individual parameters，the difficulty caused by multicollinearity is that it is possible to conclude that \qquad of the individual parameters is significantly different from zero when an \qquad on the \qquad multiple regression equation indicates a significant relationship．

7．Statisticians have developed several \qquad for determining whether multicollinear－ ity is high enough to cause problems．

8．According to the rule of thumb test，multicollinearity is a potential problem if the absolute value of the \qquad exceeds \qquad for any two of the independent variables．

9．The other types of tests are more advanced and beyond the scope of this text．If possible，every attempt should be made to avoid including independent variables that are highly correlated．

10．When multicollinearity is severe，
（a）it is not possible to determine the separate effect of any particular independent variable on the dependent variable．
（b）we can have difficulty interpreting the results of t tests on the individual pa－ rameters．
（c）Least squares estimates may have the wrong sign．
11．補充：
（a）Multicollinearity in Regression Analysis：Problems，Detection，and Solutions
https：／／statisticsbyjim．com／regression／multicollinearity－in－regression－analysis／
（b）Multicollinearity in Regression：Why it is a problem？How to check and fix it
https：／／towardsdatascience．com／multi－collinearity－in－regression－fe7a2c1467ea
（c）Eight Ways to Detect Multicollinearity
https：／／www．theanalysisfactor．com／eight－ways－to－detect－multicollinearity／
（d）Multicollinearity（Wikipedia）
https：／／en．wikipedia．org／wiki／Multicollinearity

15．6 Using the Estimated Regression Equation for Estimation and Prediction

1．The procedures for estimating the mean value of y and predicting an individual value of y in multiple regression are similar to those in regression analysis involving one independent variable．

2．We substitute the given values of $x_{1}, x_{2}, \cdots, x_{p}$ into the estimated regression equa－ tion and use the corresponding value of \hat{y} as the \qquad ．

3．Example Butler Trucking example
（a）We want to use the estimated regression equation involving x_{1}（miles traveled） and x_{2}（number of deliveries）to develop two interval estimates：
i．A \qquad of the mean travel time for all trucks that travel 100 miles and make two deliveries．
ii．A \qquad of the travel time for one specific truck that travels 100 miles and makes two deliveries
（b）Using the estimated regression equation $\hat{y}=-0.869+0.06113 x_{1}+0.923 x_{2}$ with $x_{1}=100$ and $x_{2}=2$ ，we obtain

$$
\hat{y}=
$$

\qquad

Hence，the point estimate of travel time in both cases is approximately seven hours．
（c）To develop interval estimates for the mean value of y and for an individual value of y ，we use a procedure similar to that for regression analysis involving one independent variable．The formulas required are beyond the scope of the text，but statistical \qquad for multiple regression analysis will often provide confidence intervals once the values of $x_{1}, x_{2}, \cdots, x_{p}$ are specified by the user．
（d）（Table 15．4）

TABLE 15．4 The 95\％Confidence and Prediction Intervals for Butler Trucking

Value of $\boldsymbol{x}_{\mathbf{1}}$	Value of $\boldsymbol{x}_{\mathbf{2}}$	95\％Confidence Interval Lower Limit		95\％Prediction Interval Upper Limit	Lower Limit
Upper Limit					
160	4	8.135	9.742	7.363	10.514
80	3	4.127	5.789	3.369	6.548
160	4	8.135	9.742	7.363	10.514
160	2	6.258	7.925	5.500	8.683
80	2	3.146	4.924	2.414	5.656
128	2	5.232	6.505	4.372	7.366
120	3	6.037	6.936	5.059	7.915
104	4	5.960	7.637	5.205	8.392
144	3	6.917	7.891	5.964	8.844
144	2	5.776	7.184	4.953	8.007
120	4	6.669	8.152	5.865	8.955

（e）Note that the interval estimate for an individual value of y is \qquad the interval estimate for the expected value of y ．This difference simply reflects the fact that for given values of x_{1} and x_{2} we can estimate the mean travel time for all trucks with \qquad than we can predict the travel time for one specific truck．

15．7 Categorical Independent Variables

（a）Thus far，the examples we have considered involved \qquad inde－ pendent variables such as student population，distance traveled，and number of deliveries．
（b）In many situations，however，we must work with \qquad independent variables such as gender（male，female），method of payment（cash，credit card， check），and so on．

An Example：Johnson Filtration，Inc．

（a）（Background）Johnson Filtration，Inc．，provides maintenance service for water－ filtration systems throughout southern Florida．Customers contact Johnson with requests for maintenance service on their water－filtration systems．To estimate the service time and the service cost，Johnson＇s managers want to predict the repair time necessary for each maintenance request．
（b）（Dependent variable／Independent variables）Hence，repair time in hours is the dependent variable．Repair time is believed to be related to two factors，the number of months since the last maintenance service and the type of repair problem（mechanical or electrical）．
（c）（Data）（Table 15．5）
TABLE 15．5 Data for the Johnson Filtration Example

Service Call	Months Since Last Service	Type of Repair	Repair Time in Hours
1	2	Electrical	2.9
2	6	Mechanical	3.0
3	8	Electrical	4.8
4	3	Mechanical	1.8
5	2	Electrical	2.9
6	7	Electrical	4.9
7	9	Mechanical	4.2
8	8	Mechanical	4.8
9	4	Electrical	4.4
10	6	Electrical	4.5

（d）（SLR）Let y denote the repair time in hours and x_{1} denote the number of months since the last maintenance service．The regression model that uses only x_{1} to predict y is $y=\beta_{0}+\beta_{1} x_{1}+\epsilon$
（e）（Figure 15．7）
$\begin{array}{ll}\text { FIGURE } 15.7 & \begin{array}{l}\text { Output for Johnson Filtration with Months Since Last Service }\left(x_{1}\right) \\ \text { as the Independent Variable }\end{array}\end{array}$
Analysis of Variance

Source	DF	Adj SS	Adj MS	F－Value	P－Value
Regression	1	5.596	5.5960	9.17	.016
Error	8	4.880	.6100		
Total	9	10.476			

Model Summary

S	R－sq	R－sq（adj）
.781022	53.42%	47.59%

Coefficients

Term	Coef	SE Coef	T－Value	P－Value
Constant	2.147	.605	3.55	.008
Months Since Last Service	.304	.100	3.03	.016

Regression Equation
Repair Time（hours）$=2.147+.304$ Months Since Last Service
i．The estimated regression equation is \qquad －
ii．At the 0.05 level of significance，the p－value of \qquad for the t（or F ） test indicates that the number of months since the last service is signifi－ cantly related to repair time．
iii．R－sq $=$ \qquad indicates that x_{1} alone explains \qquad of the
\qquad in repair time．

4．To incorporate the type of repair into the regression model，we define

$$
x_{2}=\left\{\begin{array}{lc}
\ldots, & \text { if the type of repair is mechanical } \\
\ldots, & \text { if the type of repair is electrical }
\end{array}\right.
$$

5．In regression analysis x_{2} is called a \qquad or \qquad ．

6．Using this dummy variable，we can write the multiple regression model as

$$
y=
$$

\qquad

7．（Table 15．6）Data for the Johnson Filtration Example with Type of Repair Indicated by a Dummy Variable（ $x_{2}=0$ for Mechanical；$x_{2}=1$ for Electrical）

TABLE 15．6	Data for the Johnson Filtration Example with Type of Repair Indicated by a Dummy Variable $\left(x_{2}=0\right.$ for Mechanical；$x_{2}=1$ for Electrical）		
Customer	Months Since Last Service $\left(x_{1}\right)$	Type of Repair $\left(\boldsymbol{x}_{2}\right)$	Repair Time in Hours (\boldsymbol{y})
1	2	1	2.9
2	6	0	3.0
3	8	1	4.8
4	3	0	1.8
5	2	1	2.9
6	7	1	4.9
7	9	0	4.2
8	8	0	4.8
9	4	1	4.4
10	6	1	4.5

8．（Figure 15．7）Output for Johnson Filtration with Months Since Last Service（ x_{1} ）as the Independent Variable

（a）The estimated multiple regression equation is
（b）At the 0.05 level of significance，the p－value of \qquad associated with the F test \qquad ）indicates that the regression relationship is significant．
（c）The t test shows that both months since last service（ p－value $=$ \qquad ） and type of repair（ p－value $=$ \qquad ）are statistically significant．
（d）In addition，R－ $\mathrm{Sq}=$ \qquad and R－Sq $(\operatorname{adj})=$ \qquad indicate that the estimated regression equation does a good job of explaining the variability in repair times．
（e）Thus，equation（15．17）should prove helpful in predicting the repair time nec－ essary for the various service calls．

Interpreting the Parameters

1．The multiple regression equation for the Johnson Filtration example is

$$
\begin{equation*}
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \tag{15.18}
\end{equation*}
$$

2．Consider the case when $x_{2}=0$（mechanical repair）．Using \qquad to denote the mean or expected value of repair time given a mechanical repair，we have

$$
\begin{equation*}
E(y \mid \text { mechanical })= \tag{15.19}
\end{equation*}
$$

3．Similarly，for an electrical repair $\left(x_{2}=1\right)$ ，we have

$$
\begin{equation*}
E(y \mid \text { electrical })= \tag{15.20}
\end{equation*}
$$

4．Comparing equations（15．19）and（15．20），we see that the mean repair time is a linear function of \qquad for both mechanical and electrical repairs．The slope of both equations is \qquad ，but the \qquad differs．

5．The y－intercept is \qquad in equation（15．19）for mechanical repairs and in equation（15．20）for electrical repairs．

6．The interpretation of β_{2} is that it indicates the \qquad between the \qquad for an electrical repair and the mean repair time for a mechanical repair．
（a）If \qquad ，the mean repair time for an electrical repair will be \qquad
that for a mechanical repair；
（b）if \qquad ，the mean repair time for an electrical repair will be \qquad that for a mechanical repair．
（c）if \qquad ，there is \qquad in the mean repair time between electrical and mechanical repairs and the type of repair is \qquad to the repair time．

7．Using the estimated multiple regression equation $\hat{y}=0.93+0.3876 x_{1}+1.263 x_{2}$ ，we see that 0.93 is the estimate of β_{0} and 1.263 is the estimate of β_{2} ．

8．Thus，when $x_{2}=0$（mechanical repair）

$$
\begin{equation*}
\hat{y}=0.93+0.3876 x_{1} \tag{15.21}
\end{equation*}
$$

and when $x_{2}=1$（electrical repair）

$$
\begin{equation*}
\hat{y}=0.93+0.3876 x_{1}+1.263(1)=2.193+0.3876 x_{1} \tag{15.22}
\end{equation*}
$$

9．In effect，the use of a dummy variable for type of repair provides \qquad
\qquad that can be used to predict the repair time，one corre－ sponding to mechanical repairs and one corresponding to electrical repairs．

10．In addition，with $\beta_{2}=1.263$ ，we learn that，on average，electrical repairs require
\qquad than mechanical repairs．

11．（Figure 15．9）Scatter Diagram for the Johnson Filtration Repair Data

More Complex Categorical Variables

1．If a categorical variable has k levels，$k-1$ dummy variables are required，with each dummy variable being coded as \qquad ．

2．Example Suppose a manufacturer of copy machines organized the sales territories for a particular state into three regions：A，B，and C．The managers want to use regression analysis to help predict the number of copiers sold per week．

3．With the number of units sold as the dependent variable，they are considering several independent variables（the number of sales personnel，advertising expenditures，and so on）．

4．Suppose the managers believe sales region is also an important factor in predicting the number of copiers sold．Because sales region is a categorical variable with three levels，A，B and C，we will need \qquad dummy variables to represent the sales region．Each variable can be coded 0 or 1 ：

$$
\begin{aligned}
& x_{1}= \begin{cases}1, & \text { if sales region B } \\
0, & \text { otherwise }\end{cases} \\
& x_{2}= \begin{cases}1, & \text { if sales region } \mathrm{C} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

5．We have the following values of x_{1} and x_{2} ：

Region	x_{1}	x_{2}
A	0	0
B	1	0
C	0	1

6．Observations corresponding to region A would be coded \qquad ；obser－ vations corresponding to region B would be coded \qquad ；and obser－ vations corresponding to region C would be coded \qquad ．

7．The regression equation relating the expected value of the number of units sold， $E(y)$ ，to the dummy variables would be written as

$$
E(y)=
$$

\qquad

8．To help us interpret the parameters β_{0}, β_{1} ，and β_{2} ，consider the following three variations of the regression equation．

$$
\begin{aligned}
& E(y \mid \text { region A })=\beta_{0}+\beta_{1}(0)+\beta_{2}(0)=\beta_{0} \\
& E(y \mid \text { region B })=\beta_{0}+\beta_{1}(1)+\beta_{2}(0)=\beta_{0}+\beta_{1} \\
& E(y \mid \text { region C })=\beta_{0}+\beta_{1}(0)+\beta_{2}(1)=\beta_{0}+\beta_{2}
\end{aligned}
$$

（a）Thus，β_{0} is the mean or expected value of sales for \qquad ；
（b）β_{1} is the \qquad between the mean number of units sold in and the mean number of units sold in \qquad ；
（c）and β_{2} is the \qquad between the mean number of units sold in \qquad and the mean number of units sold in \qquad ．

9．Two dummy variables were required because sales region is a categorical variable with three levels．

10．The assignment was \qquad ．For example，we could have chosen $x_{1}=1, x_{2}=$ 0 to indicate region $\mathrm{A}, x_{1}=0, x_{2}=0$ to indicate region B ，and $x_{1}=0, x_{2}=1$ to indicate region C ．

Region	x_{1}	x_{2}
A	1	0
B	0	0
C	0	1

In that case，β_{1} would have been interpreted as the mean difference between regions A and B and β_{2} as the mean difference between regions C and B ．

11．The important point to remember is that when a categorical variable has k levels， $k-1$ dummy variables are required in the multiple regression analysis．Thus，if the sales region example had a fourth region，labeled D ，three dummy variables would be necessary．For example，the three dummy variables can be coded as follows．
$x_{1}=\left\{\begin{array}{ll}1, & \text { if sales region } \mathrm{B} \\ 0, & \text { otherwise }\end{array} x_{2}=\left\{\begin{array}{ll}1, & \text { if sales region } \mathrm{C} \\ 0, & \text { otherwise }\end{array} x_{3}= \begin{cases}1, & \text { if sales region } \mathrm{D} \\ 0, & \text { otherwise }\end{cases}\right.\right.$

15．8 Residual Analysis

1．Standardized Residual for Observation i
where $s_{y_{i}-\hat{y}_{i}}$ is the standard deviation of residual i ．
2．Standard Deviation of Residual i

$$
\begin{equation*}
s_{y_{i}-\hat{y}_{i}}= \tag{15.24}
\end{equation*}
$$

\qquad
where s is the standard error of the estimate and h_{i} is the \qquad of obser－ vation i ．（ \qquad ， \qquad
3．（Chapter 14）the leverage of an observation is determined by how far the values of the \qquad are from their \qquad ．

4．The computation of $h_{i}, s_{y_{i}-\hat{y}_{i}}$ ，and hence the standardized residual for observation i in multiple regression analysis is too complex to be done by hand．However，the standardized residuals can be easily obtained as part of the output from statistical software．

5．Example Butler Trucking example
（a）（Table 15．7）the estimated regression equation $\hat{y}=-0.869+0.03821 x_{1}+$ $0.923 x_{2}$ ．

TABLE 15.7	Residuals and Standardized Residuals for the Butler Trucking Regression Analysis				
Kilometers		Travel	Predicted		
Traveled $\left(x_{1}\right)$	Deliveries $\left(x_{2}\right)$	Time （y）	Value （ \hat{y} ）	Residual $(y-\hat{y})$	Standardized Residual
160	4	9.3	8.93846	． 361541	． 78344
80	3	4.8	4.95830	－． 158304	－． 34962
160	4	8.9	8.93846	－． 038460	－． 08334
160	2	6.5	7.09161	－． 591609	－1．30929
80	2	4.2	4.03488	． 165121	． 38167
128	2	6.2	5.86892	． 331083	． 65431
120	3	7.4	6.48667	． 913331	1.68917
104	4	6.0	6.79875	－． 798749	－1．77372
144	3	7.6	7.40369	． 196311	． 36703
144	2	6.1	6.48026	－． 380263	－． 77639

（b）（Figure 15．10）This standardized residual plot does not indicate any unusual abnormalities．All the standardized residuals are between \qquad ； hence，we have no reason to question the assumption that the error term ϵ is normally distributed．We conclude that the model assumptions are \qquad ．

（c）（Recall Section 14．8）A \qquad also can be used to deter－ mine whether the distribution of ϵ appears to be normal．The same procedure is appropriate for multiple regression．

Detecting Outliers

1．An outlier is an observation that is \qquad in comparison with the other data． An outlier does not fit the \qquad of the other data．

2．（Chapter 14）An observation is classified as an outlier if the value of its \qquad is less than -2 or greater than +2 ．

3．（Table 15．7）Applying this rule to the standardized residuals for the Butler Trucking example，We do not detect any outliers in the data set．

4．In general，the presence of one or more outliers in a data set tends to increase \qquad ， the standard error of the estimate，and hence increase \qquad ，the standard deviation of residual i ．

5．Because $s_{y_{i}-\hat{y}_{i}}$ appears in the denominator of the formula for the standardized resid－ ual（15．23），the size of the standardized residual will \qquad as s \qquad ．
As a result，even though a residual may be unusually large，the large denominator in expression（15．23）may cause the standardized residual rule to fail to identify the observation as being an outlier．

6．We can circumvent this difficulty by using a form of the standardized residuals called
\qquad －

Studentized Deleted Residuals and Outliers

1．Suppose the i th observation is deleted from the data set and a new estimated re－ gression equation is developed with the remaining $n-1$ observations．

2．Let \qquad denote the standard error of the estimate based on the data set with the \qquad observation deleted．If we compute the standard deviation of residual i using $s_{(i)}$ instead of s ，and then compute the standardized residual for observation i using the \qquad value，the resulting standardized residual is called a
\qquad －．

3．If the i th observation is an outlier，$s_{(i)}$ will be \qquad than s ．The absolute value of the i th studentized deleted residual therefore will be \qquad the absolute value of the standardized residual．

4．Studentized deleted residuals may detect outliers that standardized residuals do not detect．

5．The t distribution can be used to determine whether the studentized deleted resid－ uals indicate the presence of outliers．
（a）If we delete the i th observation，the number of observations in the reduced data set is $n-1$ ；in this case the error sum of squares has \qquad degrees of freedom．
（b）Example For the Butler Trucking example with $n=10$ and $p=2$ ，the degrees of freedom for the error sum of squares with the $i t$ h observation deleted is $9-2-1=6$ ．At $\alpha=0.05$ level of significance，the t distribution shows that with six degrees of freedom， \qquad ．
（c）If the value of the i th studentized deleted residual is \qquad or \qquad ，we can conclude that the i th observation is an outlier．
（d）（Table 15．8）Butler Trucking example，outliers are not present in the data set．

TABLE 15．8 Studentized Deleted Residuals for Butler Trucking

Kilometers Traveled $\left(\boldsymbol{x}_{1}\right)$	Deliveries $\left(\boldsymbol{x}_{2}\right)$	Travel Time (\boldsymbol{y})	Standardized Residual	Studentized Deleted Residual
160	4	9.3	.78344	.75939
80	3	4.8	-.34962	-.32654
160	4	8.9	-.08334	-.07720
160	2	6.5	-1.30929	-1.39494
80	2	4.2	.38167	.35709
128	2	6.2	.65431	.62519
120	3	7.4	1.68917	2.03187
104	4	6.0	-1.77372	-2.21314
144	3	7.6	.36703	.34312
144	2	6.1	-.77639	-.75190

Influential Observations

1．（Section 14．9）we discussed how the leverage of an observation can be used to identify observations for which the value of the \qquad variable may have a strong
influence on the regression results．

2．The leverage of an observation，denoted h_{i} ，measures how far the values of the independent variables are from their mean values．

3．We use the rule of thumb \qquad to identify influential observations．

4．Example Butler Trucking example（ $n=10, p=2$ ）
（a）The critical value for leverage is $3(2+1) / 10=0.9$ ．
（b）（Table 15．9）Because h_{i} does not exceed 0．9，we do not detect influential ob－ servations in the data set．

TABLE 15．9 Leverage and Cook＇s Distance Measures for Butler Trucking

Kilometers Traveled				
$\left(\boldsymbol{x}_{1}\right)$	Deliveries $\left(\boldsymbol{x}_{2}\right)$	Travel Time (\boldsymbol{y})	Leverage $\left(h_{i}\right)$	Cook＇s \mathbf{D} $\left(\boldsymbol{D}_{\boldsymbol{i}}\right)$
160	4	9.3	.351704	.110994
80	3	4.8	.375863	.024536
160	4	8.9	.351704	.001256
160	2	6.5	.378451	.347923
80	2	4.2	.430220	.036663
128	2	6.2	.220557	.040381
120	3	7.4	.10009	.117562
104	4	6.0	.382657	.650029
144	3	7.6	.129098	.006656
144	2	6.1	.269737	.074217

Using Cook＇s Distance Measure to Identify

1．A problem that can arise in using leverage to identify influential observations is that an observation can be identified as having \qquad and not necessarily be influential in terms of the resulting \qquad ．
（a）（Table 15．10）Because the leverage for the eighth observation is \qquad （the critical leverage value），this observation is identified as influential．

TABLE 15.10

Data Set Illustrating Potential Problem Using the Leverage		
		Criterion

（b）（Figure 15．11）the estimated regression equation：$\hat{y}=18.2+1.39 x$

（c）Delete the observation $x=15, y=39$ from the data set and fit a new estimated regression equation to the remaining seven observations；the new estimated regression equation is $\hat{y}=18.1+1.42 x$
（d）We note that the y－intercept and slope of the new estimated regression equation
are very close to the values obtained using all the data．
（e）Although the leverage criterion identified the eighth observation as influential， this observation clearly had little influence on the results obtained．Thus，in some situations using only leverage to identify influential observations can lead to wrong conclusions．

2．Cook＇ \mathbf{s} distance measure uses both the leverage of observation i, h_{i} ，and the residual for observation $i,\left(y_{i}-\hat{y}_{i}\right)$ ，to determine whether the observation is influen－ tial．

$$
D_{i}=
$$

（a）The value of Cook＇ s distance measure will be large and indicate an influential observation if the residual or the leverage is large．
（b）As a rule of thumb，values of \qquad indicate that the i th observation is influential and should be studied further．
（c）Example（Table 15．9）Cook＇s distance measure for the Butler Trucking prob－ lem．Observation 8 with $D_{i}=0.650029<1$ ，we should not be concerned about the presence of influential observations in the Butler Trucking data set．

15．9 Logistic Regression

1．In many regression applications，the dependent variable may only assume \qquad ．

2．Example A bank might want to develop an estimated regression equation for pre－ dicting whether a person will be approved for a credit card．The dependent variable can be coded as \qquad if the bank \qquad the request for a credit card and \qquad if the bank \qquad the request for a credit card．

3．Using \qquad we can estimate the \qquad that the bank will approve the request for a credit card given a particular set of values for the chosen independent variables．

4．Example Simmons Stores．Let us consider an application of logistic regression involving a direct mail promotion being used by Simmons Stores．
（a）Simmons owns and operates a national chain of women＇s apparel stores．Five thousand copies of an expensive four－color sales catalog have been printed， and each catalog includes a coupon that provides a $\$ 50$ discount on purchases of $\$ 200$ or more．The catalogs are expensive and Simmons would like to send them to only those customers who have a high probability of using the coupon．
（b）Management believes that annual spending at Simmons Stores and whether a customer has a Simmons credit card are two variables that might be helpful in predicting whether a customer who receives the catalog will use the coupon．
（c）Simmons conducted a pilot study using a random sample of 50 Simmons credit card customers and 50 other customers who do not have a Simmons credit card． Simmons sent the catalog to each of the 100 customers selected．At the end of a test period，Simmons noted whether each customer had used her or his coupon．
（d）（Table 15．11）The amount each customer spent last year at Simmons is shown in thousands of dollars and the credit card information has been coded as 1 if the customer has a Simmons credit card and 0 if not．In the Coupon column， a 1 is recorded if the sampled customer used the coupon and 0 if not．

TABLE 15．11 Partial Sample Data for the Simmons Stores Example

| Customer | Annual Spending
 $(\$ 1000)$ | Simmons Card |
| :---: | :---: | :---: | :---: |\quad Coupon

（e）We might think of building a \qquad model using the data in Table 15.11 to help Simmons estimate whether a catalog recipient will use
the coupon．We would use Annual Spending（\＄1000）and Simmons Card as independent variables and Coupon as the dependent variable．

5．Because the dependent variable may only assume the values of 0 or 1 ，however，the model is not applicable．This example shows the type of situation for which logistic regression was developed．

Logistic Regression Equation

1．In multiple regression analysis，the mean or expected value of y is referred to as the multiple regression equation．

$$
\begin{equation*}
E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p} \tag{15.26}
\end{equation*}
$$

2．（Logistic Regression Equation）In logistic regression，statistical theory as well as practice has shown that the relationship between $E(y)$ and $x_{1}, x_{2}, \cdots, x_{p}$ is better described by the following nonlinear equation．

$$
\begin{equation*}
E(y)= \tag{15.27}
\end{equation*}
$$

3．If the two values of the dependent variable y are coded as 0 or 1 ，the value of $E(y)$ in equation（15．27）provides the \qquad given a particular set of values for the independent variables $x_{1}, x_{2}, \cdots, x_{p}$ ．

4．Because of the interpretation of $E(y)$ as a probability，the logistic regression equation is often written：

$$
\begin{equation*}
E(y)= \tag{15.28}
\end{equation*}
$$

5．Example Suppose the model involves only one independent variable x and the values of the model parameters are $\beta_{0}=-7$ and $\beta_{1}=3$ ．The logistic regression equation corresponding to these parameter values is

$$
\begin{equation*}
E(y)= \tag{15.29}
\end{equation*}
$$

（a）（Figure 15．12）shows a graph of equation（15．29）．Note that the graph is
\qquad ．The value of $E(y)$ ranges from \qquad ．

（b）For example，when $x=2, E(y)$ is approximately 0.27 ．Also note that the value of $E(y)$ gradually approaches \qquad as the value of x becomes \qquad and the value of $E(y)$ approaches \qquad as the value of x becomes \qquad ．
（c）For example，when $x=2, E(y)=0.269$ ．Note also that the values of $E(y)$ ，rep－ resenting \qquad ，increase fairly rapidly as x \qquad ．
The fact that the values of $E(y)$ range from 0 to 1 and that the curve is S － shaped makes equation（15．29）ideally suited to model the probability the dependent variable is equal to 1 ．

Estimating the Logistic Regression Equation

1．The \qquad of the logistic regression equation makes the method of computing estimates more complex and beyond the scope of this text．We use statistical \qquad to provide the estimates．

2．The estimated logistic regression equation is
$\hat{y}=$ \qquad $=$

3．Here，\hat{y} provides an \qquad given a particular set of values for the independent variables．

4．Example Simmons Stores
（a）The variables are defined：

$$
\begin{gathered}
y=\left\{\begin{array}{c}
\text { if the customer did not use the coupon } \\
\text { if the customer used the coupon }
\end{array}\right. \\
x_{2}=\left\{\begin{array}{c}
x_{1}=\text { annual spending at Simmons Stores (\$1000s) } \\
\text { if the customer does not have a Simmons credit card } \\
\text { if the customer has a Simmons credit card }
\end{array}\right.
\end{gathered}
$$

（b）Thus，we choose a logistic regression equation with two independent variables．

$$
\begin{equation*}
E(y)= \tag{15.31}
\end{equation*}
$$

Using the sample data（see Table 15．11），we used statistical software to com－ pute estimates of the model parameters b_{0}, b_{1} ，and b_{2} ．
（c）（Figure 15．13）
FIGURE 15．13 Logistic Regression Output for the Simmons Stores Example
Significance Tests

Term	Degrees of Freedom	χ^{2}	p －Value
Whole Model	2	13.63	.0011
Spending	1	7.56	.0060
Card	1	6.41	.0013

Parameter Estimates

Term	Estimate	Standard Error
Intercept	-2.146	.577
Spending	.342	.129
Card	1.099	.44

Odds Ratios

Term	Odds Ratio	Lower 95\％	Upper 95\％
Spending	1.4073	1.0936	1.8109
Card	3.0000	1.2550	7.1730

（d）We see that $\beta_{0}=-2.146, \beta_{1}=0.342$ ，and $\beta_{2}=1.099$ ．Thus，the estimated logistic regression equation is

$$
\begin{equation*}
\hat{y}=\frac{e^{-2.146+0.342 x_{1}+1.099 x_{2}}}{1+e^{-2.146+0.342 x_{1}+1.099 x_{2}}} \tag{15.32}
\end{equation*}
$$

（e）An estimate the probability of using the coupon for customers who spend $\$ 2000$ annually and do not have a Simmons credit card is approximately $0.19\left(x_{1}=2\right.$ and $x_{2}=0$ ）：

$$
\hat{y}=
$$

（f）An estimate the probability of using the coupon for customers who spent $\$ 2000$ last year and have a Simmons credit card is approximately 0.41 ．（ $x_{1}=2$ and $x_{2}=1$ ）：

$$
\hat{y}=\frac{e^{-2.146+0.342(2)+1.099(1)}}{1+e^{-2.146+0.342(2)+1.099(1)}}=\frac{e^{-0.363}}{1+e^{-0.363}}=0.4102
$$

（g）It appears that the probability of using the coupon is \qquad for customers with a Simmons credit card．
（h）Before reaching any conclusions，however，we need to assess the statistical

Testing for Significance

1．Testing for significance in logistic regression is similar to testing for significance in multiple regression．

2．First we conduct a test for \qquad ．For the Simmons Stores ex－ ample，the hypotheses for the test of overall significance follow：
H_{0} ：
H_{a} ：One or both of the parameters is not equal to zero
（a）The test for overall significance is based upon the value of a \qquad statis－ tic．If the null hypothesis is true，the sampling distribution of χ^{2} follows a chi－ square distribution with degrees of freedom equal to the in the model．
（b）（Figure 15．13）The calculations of χ^{2} is \qquad ． The value of χ^{2} and its corresponding p－value in the Whole Model row of the Significance Tests table is 13.63 and its p－value is 0.0011 ．Thus，at any level of significance $\alpha \geq 0.0011$ ，we would reject the null hypothesis and conclude that the overall model is significant．
（c）NOTE：
i．Logistic Regression：https：／／online．stat．psu．edu／stat462／node／207／
ii．Logistic regression（Wikipedia）：https：／／en．wikipedia．org／wiki／Logistic＿ regression

3．If the χ^{2} test shows an overall significance，another \qquad can be used to determine whether each of the \qquad independent variables is making a significant contribution to the overall model．
（a）For the independent variables x_{i} ，the hypotheses are
（b）If the null hypothesis is true，the sampling distribution of χ^{2} follows a chi－ square distribution with one degree of freedom．
（c）（Figure 15．13）The Spending and Card rows of the Significance Tests table of Figure 15.13 contain the values of χ^{2} and their corresponding p－values test for the estimated coefficients．Suppose we use $\alpha=0.05$ to test for the significance of the independent variables in the Simmons model．
（d）For the independent variable Spending $\left(x_{1}\right)$ the χ^{2} value is \qquad and the corresponding p－value is \qquad ．Thus，at the 0.05 level of significance we can reject $H_{0}: \beta_{1}=0$ ．
（e）In a similar fashion we can also reject $H_{0}: \beta_{2}=0$ because the p－value corre－ sponding to Card＇s \qquad is \qquad ．Hence，at the 0.05 level of significance，both independent variables are statistically significant．

Managerial Use

1．We described how to develop the estimated logistic regression equation and how to test it for significance．

2．Example For Simmons Stores，we already computed $P\left(y=1 \mid x_{1}=2, x_{2}=1\right)=$ 0.4102 and $P\left(y=1 \mid x_{1}=2, x_{2}=0\right)=0.1881$ ．These probabilities indicate that for customers with annual spending of $\$ 2000$ the presence of a Simmons credit card of using the coupon．

3．（Table 15．12）The estimated probabilities for values of annual spending ranging from $\$ 1000$ to $\$ 7000$ for both customers who have a Simmons credit card and customers who do not have a Simmons credit card．

TABLE 15．12 Estimated Probabilities for Simmons Stores

		Annual Spending							
		$\$ 1000$	$\$ 2000$	$\$ 3000$	$\$ 4000$	$\$ 5000$	$\$ 6000$	$\$ 7000$	
Credit	Yes	.3307	.4102	.4948	.5796	.6599	.7320	.7936	
Card	No	.1414	.1881	.2460	.3148	.3927	.4765	.5617	

4．How can Simmons use this information to better target customers for the new promotion？Suppose Simmons wants to send the promotional catalog only to cus－ tomers who have a \qquad probability of using the coupon．Using the estimated probabilities in Table 15．12，Simmons promotion strategy would be：
（a）Customers who have a Simmons credit card：Send the catalog to every cus－ tomer who spent a $\$ 2000$ or more last year．
（b）Customers who do not have a Simmons credit card：Send the catalog to every customer who spent \qquad or more last year．

5．The probability of using the coupon for customers who do not have a Simmons credit card but spend $\$ 5000$ annually is \qquad ．Thus，Simmons may want to consider revising this strategy by including those customers who \qquad a credit card，as long as they spent \qquad or more last year．

Interpreting the Logistic Regression Equation

1．With logistic regression，it is difficult to interpret the relation between the inde－ pendent variables and the \qquad directly because the logistic regression equation is \qquad ．

2．The relationship can be interpreted indirectly using a concept called the \qquad （勝算比）．

3．The \qquad （勝算）in favor of an event occurring is defined as the probability the event \qquad divided by the probability the event \qquad ．In logistic regression the event of interest is always \qquad ．

4．Given a particular set of values for the independent variables，the odds in favor of $y=1$ can be calculated as follows：

$$
\begin{equation*}
o d d s=\quad= \tag{15.33}
\end{equation*}
$$

5．The odds ratio is the odds that $y=1$ given that one of the independent variables has been increased by \qquad divided by the odds that $y=1$ given in the values for the independent variables \qquad ．

（a）Odds Ratio

Odds Ratio =
（b）For example，suppose we want to compare the odds of using the coupon for customers who spend $\$ 2000$ annually and have a Simmons credit card（ $x_{1}=2$ and $x_{2}=1$ ）to the odds of using the coupon for customers who spend $\$ 2000$ annually and do not have a Simmons credit card（ $x_{1}=2$ and $x_{2}=0$ ）．
（c）We are interested in interpreting the effect of a one－unit increase in the independent variable x_{2} ．In this case

$$
\operatorname{odd}_{s 1}=
$$

and

$$
\operatorname{odd}_{s 0}=
$$

（d）Previously we showed that an estimate of the probability that $y=1$ given $x_{1}=2$ and $x_{2}=1$ is 0.4102 ，and an estimate of the probability that $y=1$ given $x_{1}=2$ and $x_{2}=0$ is 0.1881 ．Thus，

$$
\text { estimate of } o d d_{s 1}=\frac{0.4102}{1-0.4102}=0.6956
$$

and

$$
\text { estimate of } o d d_{s 2}=\frac{0.1881}{1-0.1881}=0.2318
$$

The estimated odds ratio is

$$
\text { estimated odds ratio }=\frac{0.6956}{0.2318}=3.00
$$

（e）Thus，we can conclude that the \qquad in favor of using the coupon for customers who spent $\$ 2000$ last year and have a Simmons credit card are \qquad the estimated odds in favor of using the coupon for customers who spent $\$ 2000$ last year and do not have a Simmons credit card．

6．The odds ratio measures the impact on the odds of a one－unit increase in \qquad of the independent variables．

7．The odds ratio for each independent variable is computed while holding all the other independent variables \qquad ．But it does not matter what constant values are used for the other independent variables．For instance，if we computed the odds ratio for the Simmons credit card variable（ x_{2} ）using $\$ 3000$ ，instead of $\$ 2000$ ，as the value for the annual spending variable $\left(x_{1}\right)$ ，we would still obtain the
\qquad for the estimated odds ratio（3．00）．Thus，we can conclude that the estimated odds of using the coupon for customers who have a Simmons credit card are 3 times greater than the estimated odds of using the coupon for customers who do not have a Simmons credit card．

8．（Figure 15．13）the estimated odds ratios for each of the independent variables．The estimated odds ratio for Spending $\left(x_{1}\right)$ is \qquad and the estimated odds ratio for Card $\left(x_{2}\right)$ is \qquad ．

9．Let us now consider the interpretation of the estimated odds ratio for the continuous independent variable x_{1} ．The value of 1.4073 in the Odds Ratio column of the output tells us that the \qquad in favor of using the coupon for customers who spent $\$ 3000$ last year is \qquad the estimated odds in favor of using the coupon for customers who spent $\$ 2000$ last year．

10．A unique relationship exists between the \qquad for a variable and its corresponding \qquad ．For each independent variable in a logistic regression equation it can be shown that
（a）To illustrate this relationship，consider the independent variable x_{1} in the Simmons example．The estimated odds ratio for x_{1} is

$$
\text { Estimated odds ratio }=e^{b_{1}}=e^{0.342}=1.407
$$

Similarly，the estimated odds ratio for x_{2} is

$$
\text { Estimated odds ratio }=e^{b_{2}}=e^{1.099}=3.000
$$

（b）補充：

$$
\begin{aligned}
\hat{p} & =\frac{e^{b_{0}+b_{1} x_{1}}}{1+e^{b_{0}+b_{1} x_{1}}}, \quad 1-\hat{p}=\frac{1}{1+e^{b_{0}+b_{1} x_{1}}} \\
\ln (\hat{p})-\ln (1-\hat{p}) & =\ln \left(e^{b_{0}+b_{1} x_{1}}\right)-\ln \left(1+e^{b_{0}+b_{1} x_{1}}\right)-\ln (1)+\ln \left(1+e^{b_{0}+b_{1} x_{1}}\right) \\
\ln \left(\frac{\hat{p}}{1-\hat{p}}\right) & =b_{0}+b_{1} x_{1} \\
\frac{\hat{p}}{1-\hat{p}} & =e^{b_{0}+b_{1} x_{1}} \\
\left.\frac{\hat{p}}{1-\hat{p}}\right|_{x_{1}=0} & =e^{b_{0}},\left.\quad \frac{\hat{p}}{1-\hat{p}}\right|_{x_{1}=1}=e^{b_{0}+b_{1}} \\
& \Rightarrow \text { odds ratio }\left.\right|_{x=1 / x=0}=e^{b_{1}}
\end{aligned}
$$

11．The odds ratio for an independent variable represents the for a \qquad change in the independent variable holding all the other inde－ pendent variables \qquad ．
（a）Suppose that we want to consider the effect of a change of more than one unit，say c units．For instance，suppose in the Simmons example that we want to compare the odds of using the coupon for customers who spend $\$ 5000$ annually $\left(x_{1}=5\right)$ to the odds of using the coupon for customers who spend $\$ 2000$ annually $\left(x_{1}=2\right)$ ．In this case $c=5-2=3$ and the corresponding estimated odds ratio is
（b）This result indicates that the estimated odds of using the coupon for customers who spend $\$ 5000$ annually is \qquad greater than the estimated odds of using the coupon for customers who spend $\$ 2000$ annually．
（c）In other words，the estimated odds ratio for an increase of $\$ 3000$ in annual spending is 2.79 ．
（d）In general，the odds ratio enables us to compare the odds for two different events．If the value of the odds ratio is \qquad ，the odds for both events are the same．Thus，if the independent variable we are considering（such as Simmons credit card status）has a \qquad on the probability of the event occurring，the corresponding odds ratio will be \qquad
12．（Figure 15．13）Most statistical software packages provide a confidence interval for the odds ratio．The Odds Ratio table in Figure 15.13 provides a 95% confidence interval for each of the odds ratios．
（a）For example，the point estimate of the odds ratio for x_{1} is 1.4073 and the 95% confidence interval is \qquad ．Because the confidence in－ terval does not contain the value of \qquad ，we can conclude that x_{1} has a
\qquad relationship with the estimated odds ratio．
（b）Similarly，the 95% confidence interval for the odds ratio for x_{2} is \qquad ．
Because this interval does not contain the value of 1 ，we can also conclude that x_{2} has a significant relationship with the odds ratio．

Logit Transformation

1．It can be shown that

2．This equation shows that the natural logarithm of the odds in favor of $y=1$ is a linear function of the independent variables．This linear function is called the
\qquad ．We will use the notation \qquad to denote the logit．

3．Logit

$$
\begin{equation*}
g\left(x_{1}, x_{2}, \cdots, x_{p}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p} \tag{15.35}
\end{equation*}
$$

4．Substituting $g\left(x_{1}, x_{2}, \cdots, x_{p}\right)$ for $\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}$ in equation（15．27）， we can write the logistic regression equation as

$$
\begin{equation*}
E(y)= \tag{15.36}
\end{equation*}
$$

5．Once we estimate the parameters in the logistic regression equation，we can compute an estimate of the logit．Using $\hat{g}\left(x_{1}, x_{2}, \cdots, x_{p}\right)$ to denote the estimated logit，we obtain

Estimated Logit

6．Thus，in terms of the estimated logit，the estimated regression equation is

$$
\begin{equation*}
\hat{y}=\frac{e^{b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{p} x_{p}}}{1+e^{b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{p} x_{p}}}=\frac{e^{\hat{g}\left(x_{1}, x_{2}, \cdots, x_{p}\right)}}{1+e^{\hat{g}\left(x_{1}, x_{2}, \cdots, x_{p}\right)}} \tag{15.38}
\end{equation*}
$$

7．For the Simmons Stores example，the estimated logit is
and the estimated regression equation is

$$
\hat{y}=\quad=
$$

$$
=
$$

Thus，because of the unique relationship between the estimated logit and the esti－ mated logistic regression equation，we can compute the estimated probabilities for Simmons Stores by dividing $e^{\hat{g}\left(x_{1}, x_{2}\right)}$ by $1+e^{\hat{g}\left(x_{1}, x_{2}\right)}$ ．

Chapter 15：Multiple Regression

© EXERCISES

$15.2: 1,5,6$
15.3 ： $11,14,15$
15.5 ：19，23， 24
$15.6: 27,29$
15.7 ： $32,34,35$
15.8 ：40， 41
15.9 ： $44,46,48$

SUP ：51， 55.
＂你無法改變別人的長相，但我們可以改變我們看人的方式。＂
＂You can not change someone＇s looks，but we can change the way we look．＂
—奇蹟男孩（Wonder，2017）

統計學（二）

Anderson＇s Statistics for Business \＆Economics（14／E）

Chapter 17：Time Series Analysis and Forecasting

上課時間地點：二 D56，商館 260206
授課教師：吳漢銘（國立政治大學統計學系副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

17．1 Time Series Patterns

1．time series：A \qquad is a sequence of observations on a variable measured at successive points in time or over successive periods of time．

2．The measurements may be taken every hour，day，week，month，or year，or at any other \qquad ．（this textbook limits the discussion to time series in which the values of the series are recorded at equal intervals）

3．The \qquad of the data is an important factor in understanding how the time series has behaved in the \qquad ．If such behavior can be expected to continue in the \qquad ，we can use the past pattern to guide us in selecting an appropriate
\qquad method．

4．A \qquad is a graphical presentation of the relationship between time and the time series variable； \qquad is on the horizontal axis and the time series
\qquad are shown on the vertical axis．A time series plot is useful to identify the underlying pattern in the data．

5．Some of the common types of data patterns that can be identified when examining a time series plot：horizontal pattern，trend pattern，seasonal pattern，trend and seasonal pattern，and cyclical pattern．

Horizontal Pattern

1．A horizontal pattern exists when the data \qquad around a \qquad ．

2．Example（Table 17．1）（Figure 17．1）These data show the number of gallons of gasoline sold by a gasoline distributor in Bennington，Vermont，over the past 12 weeks．

Gasoline Sales Time Series	
Week	Sales（1000s of gallons）
1	17
2	21
3	19
4	23
5	18
6	16
7	20
8	18
9	22
10	20
11	15
12	22

FIGURE 17．1 Gasoline Sales Time Series Plot

The average value or mean for this time series is 19.25 gallons（1000s）per week． Although \qquad is present，we would say that these data follow a horizontal pattern．

3．The term \qquad time series is used to denote a time series whose statistical properties are \qquad ．

4．In particular this means that
（a）The process generating the data has a \qquad ．
（b）The variability of the time series is \qquad over time．

5．A time series plot for a stationary time series will always exhibit a \qquad ．
But simply observing a horizontal pattern is not sufficient evidence to conclude that the time series is stationary．

6．More advanced texts on forecasting discuss procedures for determining if a time series is stationary and provide methods for transforming a time series that is not stationary into a stationary series．

7．Changes in business conditions can often result in a time series that has a horizontal pattern \qquad to a new level．
（a）Example For instance，suppose the gasoline distributor signs a contract with the Vermont State Police to provide gasoline for state police cars located in southern Vermont．With this new contract，the distributor expects to see a major increase in weekly sales starting in week 13.
（b）（Table 17．2）The number of gallons of gasoline sold for the original time series and for the 10 weeks after signing the new contract．

（c）（Figure 17．2）Note the increased level of the time series beginning in week 13．This change in the level of the time series makes it more \qquad to choose an appropriate forecasting method．

8．Selecting a forecasting method that adapts well to \qquad of a time series is an important consideration in many practical applications．

Trend Pattern

1．Although time series data generally exhibit random fluctuations，a time series may also show gradual \qquad to relatively higher or lower values over a \qquad period of time．

2．If a time series plot exhibits this type of behavior，we say that a \qquad exists．

3．A trend is usually the result of \qquad such as population increases or decreases，changing demographic characteristics of the population，technology， and／or consumer preferences．

4．Example（Table 17．3）（Figure 17．3）Consider the time series of bicycle sales for a particular manufacturer over the past 10 years．

FIGURE 17.3 Bicycle Sales Time Series Plot

TABLE 17.3

Bicycle Sales Time Series	
Year	Sales（1000s）
1	21.6
2	22.9
3	25.5
4	21.9
5	23.9
6	27.5
7	31.5
8	29.7
9	28.6
10	31.4

Visual inspection of the time series plot shows some up and down movement over the past 10 years，but the time series also seems to have a or \qquad ．The trend for the bicycle sales time series appears to be and increasing over time．

5．Example（Table 17．4）（Figure 17．4）The data show the sales for a cholesterol drug since the company won FDA approval for it 10 years ago．

The time series increases in a nonlinear fashion；that is，the \qquad of revenue does not increase by a constant amount from one year to the next．In fact， the revenue appears to be growing in an \qquad fashion．

6．Exponential relationships such as this are appropriate when the percentage change from one period to the next is relatively \qquad ．

Seasonal Pattern

1．The trend of a time series can be identified by analyzing multiyear movements in
\qquad ．Seasonal patterns are recognized by seeing the over successive periods of time．

2．Example For example，a manufacturer of swimming pools expects low sales activity in the fall and winter months，with peak sales in the spring and summer months． Manufacturers of snow removal equipment and heavy clothing，however，expect just the opposite yearly pattern．

3．The pattern for a time series plot that exhibits a repeating pattern over a one－year period due to seasonal influences is called a \qquad pattern．

4．Example Daily traffic volume shows within－the－day＂seasonal＂behavior，with peak levels occurring during rush hours，moderate flow during the rest of the day and early evening，and light flow from midnight to early morning．

5．Example（Table 17．5）（Figure 17．5）As an example of a seasonal pattern，consider the number of umbrellas sold at a clothing store over the past five years．
TABLE 17.5 Umbrella Sales Time Series

Year	Quarter	Sales
1	1	125
	2	153
	3	106
2	4	88
	1	118
3	2	161
	3	133
	4	102
4	1	138
	2	144
	3	113
	4	80
	1	109
	2	137
	3	125
	1	109
	2	130

FIGURE 17.5 Umbrella Sales Time Series Plot

The time series plot does not indicate any \qquad in sales．The data follow a \qquad pattern．But closer inspection of the time series plot reveals a \qquad in the data．That is，the first and third quar－ ters have moderate sales，the second quarter has the highest sales，and the fourth quarter tends to have the lowest sales volume．Thus，we would conclude that a
\qquad pattern is present．

Trend and Seasonal Pattern

1．Some time series include a combination of a trend and seasonal pattern．
2．Example（Table 17．6）（Figure 17．6）The smartphone sales for a particular manu－ facturer over the past four years．

TABLE 17.6	Quarterly Smartphone Sales Time Series	
Year	Quarter	Sales（1000s）
	1	4.8
	2	4.1
	3	6.0
2	4	6.5
	1	5.8
	2	5.2
3	3	6.8
	4	7.4
	1	6.0
	2	5.6
4	3	7.5
	4	7.8
	1	6.3
	2	5.9

FIGURE 17．6 Quarterly Smartphone Sales Time Series Plot

3．Clearly，an increasing trend is present．

4．But，Figure 17.6 also indicates that sales are lowest in the second quarter of each year and increase in quarters 3 and 4 ．Thus，we conclude that a seasonal pattern also exists for smartphone sales．

5．In such cases we need to use a forecasting method that has the capability to deal with both \qquad ．

Cyclical Pattern

1．A \qquad pattern exists if the time series plot shows an alternating sequence of points below and above the \qquad lasting more than one year．

2．Often，the cyclical component of a time series is due to \qquad ．

3．Example For example，periods of moderate inflation followed by periods of rapid inflation can lead to time series that alternate \qquad a generally increasing trend line（e．g．，a time series for housing costs）．

4．A cyclical pattern repeats with some \qquad ．Cyclical patterns differ from seasonal patterns in that cyclical patterns occur over multiple years，whereas seasonal patterns occur \qquad ．

5．More Example https：／／robjhyndman．com／hyndsight／cyclicts／
（a）The plot shows the famous Canadian lynx（山貓）data－the number of lynx trapped each year in the McKenzie（麥肯錫）river district of northwest Canada （1821－1934）．These show clear aperiodic（非週期性的）population cycles of approximately 10 years．The cycles are not of fixed length－some last 8 or 9 years and others last longer than 10 years．

（b）The plot shows the monthly sales of new one－family houses sold in the USA （1973－1995）．There is strong seasonality within each year，as well as some strong cyclic behaviour with period about 6－10 years．

（c）The plot shows half－hourly electricity demand in England and Wales from Monday 5 June 2000 to Sunday 27 August 2000．Here there are two types of seasonality－a \qquad pattern and a \qquad pattern．If we collected data over a few years，we would also see there is an \qquad pattern．If we collected data over a few decades，we may even see a longer cyclic pattern．

6．Business cycles are extremely difficult，if not impossible，to forecast．As a result， cyclical effects are often combined with long－term trend effects and referred to as
\qquad －

Selecting a Forecasting Method

1．The underlying pattern in the time series is an important factor in selecting a forecasting method．Thus，a \qquad should be one of the first things developed when trying to determine which forecasting method to use．

2．The next two sections illustrate methods that can be used in situations where the underlying pattern is horizontal；in other words，no trend or seasonal effects are present．We then consider methods appropriate when trend and／or seasonality are present in the data．

17．2 Forecast Accuracy

1．The simplest of all the forecasting methods（a \qquad ）：an approach that uses the \qquad week＇s sales volume as the forecast for the next week．

2．（Table 17．7）The distributor sold 68 thousand gallons of gasoline in week 1 ；this value is used as the forecast for week 2 ．Next，we use 84 ，the actual value of sales in week 2 ，as the forecast for week 3 ，and so on．

TABLE	Computing Forecasts and Measures of Forecast Accuracy Using the Most Recent Value as the Forecast for the Next Period						
Week	Time Series Value	Forecast	Forecast Error	Absolute Value of Forecast Error	Squared Forecast Error	Percentage Error	Absolute Value of Percentage Error
1	68						
2	84	68	16	16	256	19.05	19.05
3	76	84	－8	8	64	－10．53	10.53
4	92	76	16	16	256	17.39	17.39
5	72	92	－20	20	400	－27．78	27.78
6	64	72	－8	8	64	－12．50	12.50
7	80	64	16	16	256	20.00	20.00
8	72	80	－8	8	64	－11．11	11.11
9	88	72	16	16	256	18.18	18.18
10	80	88	－8	8	64	－10．00	10.00
11	60	80	－20	20	400	－33．33	33.33
12	88	60	28	28	784	31.82	31.82
		Totals	20	164	2864	1.19	211.69

3．The key concept associated with measuring forecast accuracy is \qquad ， defined as
（a）Example Because the distributor actually sold 84 thousand gallons of gasoline in week 2 and the forecast，using the sales volume in week 1 ，was 68 thousand gallons，the forecast error in week 2 is

Forecast Error in week $2=$ \qquad
（b）The fact that the forecast error is positive indicates that in week 2 the forecast－ ing method \qquad the actual value of sales．Next，we use 84， the actual value of sales in week 2 ，as the forecast for week 3 ．Since the actual value of sales in week 3 is 76 ，the forecast error for week 3 is $76-84=-8$ ． In this case，the negative forecast error indicates that in week 3 the forecast
\qquad the actual value．
（c）A simple measure of forecast accuracy is the
Table 17.7 shows that the sum of the forecast errors for the gasoline sales time series is 20 ；thus，the mean or average forecast error is \qquad －
（d）Because positive and negative forecast errors tend to \qquad one another， the mean error is likely to be small；thus，the mean error is not a very useful measure of forecast accuracy．

4．The \qquad ，denoted \qquad ，is the average of the absolute values of the forecast errors．
（a）MAE is a measure of forecast accuracy that avoids the problem of positive and negative forecast errors offsetting one another．
（b）（Table 17．7）the sum of the absolute values of the forecast errors is 164：

$$
\text { MAE }=\text { average of the absolute value of forecast errors }=
$$

\qquad

5．Another measure that avoids the problem of positive and negative forecast errors offsetting each other is obtained by computing the average of the \qquad forecast errors（ \qquad ，is denoted \qquad ．）
$\mathrm{MSE}=$ average of the sum of squared forecast errors $=$ \qquad

6．The size of MAE and MSE depends upon the \qquad ．As a result， it is difficult to make comparisons for different time intervals，such as comparing
a method of forecasting monthly gasoline sales to a method of forecasting weekly sales，or to make comparisons across different time series．

7．The \qquad ，denoted \qquad ，is a percentage er－ ror corresponding to the \qquad of 84 in week 2 is computed by dividing the
\qquad in week 2 by the \qquad in week 2 and multiplying the result by \qquad ．
（a）For week 2 the percentage error is computed as follows：

$$
\text { Percentage error for week } 2=\quad=16 / 84 \times(100)=19.05 \%
$$

Thus，the forecast error for week 2 is 19.05% of the observed value in week 2 ．
（b）The sum of the absolute values of the percentage errors is 211．69：

$$
\begin{aligned}
\text { MAPE } & =\text { average of the absolute value of percentage forecast errors } \\
& =
\end{aligned}
$$

8．Summarizing，using the naive（most recent observation）forecasting method，we obtained the following measures of forecast accuracy：

$$
\mathrm{MAE}=3.73, \quad \mathrm{MSE}=16.27, \quad \mathrm{MAPE}=19.24 \%
$$

9．These measures of forecast accuracy simply measure how well the forecasting method is able to \qquad of the time series．

10．Suppose we want to forecast sales for a \qquad ，such as week 13 ． In this case the forecast for week 13 is 88 ，the actual value of the time series in week 12．Is this an accurate estimate of sales for week 13 ？Unfortunately， there is no way to address the issue of \qquad associated with forecasts for
\qquad ．But，if we select a forecasting method that works well for the historical data，and we think that the historical pattern will continue into the future，we should obtain results that will ultimately be shown to be good．

11．（Table 17．8）Suppose we use the \qquad available as the forecast for the next period．We begin by developing a forecast for week 2 ．Since there is only one historical value available prior to week 2 ，the forecast for week 2
is just the time series value in week 1 ；thus，the forecast for week 2 is 84 thousand gallons of gasoline．To compute the forecast for week 3，we take the average of the sales values in weeks 1 and 2 ．Thus，

Forecast for week $3=$ \qquad
TABLE 17．8 Computing Forecasts and Measures of Forecast Accuracy Using the Average of All the Historical Data as the Forecast for the Next Period

	Time Series	Forecast	Forecast Error						Absolute Value of Forecast Error	Squared Forecast Error	Percentage Error	Absolute Value of Percentage
Error												

12．Comparing the values of MAE，MSE，and MAPE for each method：

	Naive Method	Average of Past Values
MAE	14.91	9.75
MSE	260.36	129.56
MAPE	19.24%	12.85%

13．For every measure，the average of past values provides \qquad forecasts than using the most recent observation as the forecast for the next period．

14．In general，if the underlying time series is \qquad ，the average of all the historical data will always provide the best results．
（a）（Recall Table 17．2）But suppose that the underlying time series is not station－ ary．Note the \qquad in week 13 for the resulting time series． When a shift to a new level like this occurs，it takes a long time for the fore－ casting method that uses the average of all the historical data to adjust to the new level of the time series．
（b）In this case，the simple naive method adjusts very rapidly to the change in level because it uses the most recent observation available as the forecast．
（c）Measures of forecast accuracy are important factors in comparing different forecasting methods，but we have to be careful not to rely upon them too heavily．
（d）Good judgment and knowledge about business conditions that might affect the forecast also have to be carefully considered when selecting a method．And is not the only consideration，especially if the time series is likely to change in the future．

17．3 Moving Averages and Exponential Smoothing

1．Three forecasting methods that are appropriate for a time series with a horizontal pattern： \qquad averages， \qquad moving averages，and \qquad smoothing．

2．The objective of each of these methods is to smooth out the in the time series，they are referred to as \qquad methods．

3．These methods are easy to use and generally provide a high level of \qquad for short－range \qquad ，such as a forecast for the next time period．

Moving Averages

1．（Moving Average Forecast of Order k ）The moving averages method uses the average of the most recent k data values in the time series as the forecast for the next period：
$F_{t+1}=\frac{\sum(\text { most recent } k \text { data values })}{k}=$
where F_{t+1} is the forecast of the times series for period $t+1$ and Y_{t} is the actual value of the time series in period t ．

2．The average will change，or move，as new observations become available．
（a）To use moving averages to forecast a time series，we must first select the
\qquad ，or number of time series values，to be included in the moving average．
（b）If only the \qquad values of the time series are considered relevant， a small value of k is preferred．
（c）If \qquad values are considered relevant，then a larger value of k is better．
（d）A time series with a horizontal pattern can shift to a new level over time．A moving average will adapt to the new level of the series and resume providing good forecasts in k periods．
（e）Thus，a smaller value of k will \qquad in a time series more quickly． But larger values of k will be more effective in \qquad the random fluctuations over time．

3．Example（Recall Table 17.1 and Figure 17．1）the gasoline sales data
（a）The time series plot in Figure 17.1 indicates that the gasoline sales time series has a \qquad ．Thus，the smoothing methods of this section are applicable．
（b）Use a three－week moving average（ $k=3$ ），the forecast of sales in week 4 using the average of the time series values in weeks $1-3$ ：

$$
F_{4}=\text { average of weeks } 1-3=
$$

Thus，the moving average forecast of sales in week 4 is 76 or 76,000 liters of gasoline．
（c）The actual value observed in week 4 is 92 ，the \qquad in week 4 is $92-76=16$.
（d）（Table 17．9）The forecast of sales in week 5 by averaging the time series values in weeks 2－4．

$$
F_{5}=\text { average of weeks } 2-4=\frac{84+76+92}{3}=84
$$

Hence，the forecast of sales in week 5 is 84 and the error associated with this forecast is $72-84=-12$ ．

TABLE 17．9 Summary of Three－Week Moving Average Calculations

Week	Time Series Value	Forecast	Forecast Error	Absolute Value of Forecast Error	Squared Forecast Error	Percentage Error	Absolute Value of Percentage Error
1	68						
2	84						
3	76						
4	92	76	16	16	256	17.39	17.39
5	72	84	－12	12	144	－16．67	16.67
6	64	80	－16	16	256	－25．00	25.00
7	80	76	4	4	16	5.00	5.00
8	72	72	0	0	0	． 00	． 00
9	88	72	16	16	256	18.18	18.18
10	80	80	0	0	0	． 00	． 00
11	60	80	－20	20	400	－33．33	33.33
12	88	76	12	12	144	13.64	13.64
		Totals	0	96	1472	－20．79	129.21

（e）（Figure 17．7）Note how the graph of the moving average forecasts has tended to \qquad the random fluctuations in the time series．

$$
\begin{array}{ll}
\text { FIGURE 17.7 } & \begin{array}{l}
\text { Gasoline Sales Time Series Plot and Three-Week Moving } \\
\text { Average Forecasts }
\end{array}
\end{array}
$$

（f）To forecast sales in week 13 ，the next time period in the future，we simply compute the average of the time series values in weeks 10,11 ，and 12 ．

$$
F_{13}=\text { average of weeks } 10-12=\frac{80+60+88}{3}=76
$$

（g）Forecast Accuracy Using the three－week moving average calculations in Ta－ ble 17．9，the values for these three measures of forecast accuracy（MAE，MSE，
and MAPE）are

$$
\begin{aligned}
\text { MAE } & =\frac{96}{9}=10.67 \quad(\text { mean absolute error }) \\
\text { MSE } & =\frac{1472}{9}=163.56 \quad(\text { mean squared error }) \\
\text { MAPE } & =\frac{129.21}{9}=14.36 \% \quad \text { (mean absolute percentage error) }
\end{aligned}
$$

（h）（Recall Section 17．2）Using the most recent observation as the forecast for the next week（a moving average of order $k=1$ ）resulted in values of MAE $=14.91$ ， MSE $=260.36$ ，and MAPE $=19.24 \%$ ．Thus，in each case the three－week moving average approach provided \qquad forecasts than simply using the most recent observation as the forecast．

4．To determine if a moving average with a different order k can provide more accurate forecasts，we recommend using \qquad to determine the value of k that minimizes MSE．

5．For the gasoline sales time series，it can be shown that the minimum value of MSE corresponds to a moving average of order \qquad ．If we are willing to assume that the order of the moving average that is best for the historical data will also be best for future values of the time series，the most accurate moving average forecasts of gasoline sales can be obtained using a moving average of order $k=6$ ．

Weighted Moving Averages

1．In the moving averages method，each observation in the moving average calculation receives the \qquad ．

2．One variation，known as weighted moving averages，involves selecting a \qquad for each data value and then computing a weighted average of the most recent k values as the forecast．

3．In most cases，the \qquad observation receives the \qquad ，and the weight decreases for older data values．

4．A moving average forecast of order $k=3$ is just a special case of the weighted moving averages method in which each weight is equal to $1 / 3$ ．Note that for the weighted moving average method the sum of the weights is equal to \qquad ．

5．Example We assign a weight of to the most recent observation，a weight of to the second most recent observation，and a weight of to the third most recent observation．Using this weighted average，our forecast for week 4 is：

Forecast for week $4=$
6．To use the weighted moving averages method，we must first select the number of data values to be included in the weighted moving average and then choose weights for each of the data values．In general，if we believe that the is a better predictor of the future than the distant past， \qquad should be given to the more recent observations．However，when the time series is highly variable，selecting approximately \qquad for the data values may be best．

7．Forecast Accuracy To determine whether one particular combination of number of data values and weights provides a more accurate forecast than another combination， we recommend using \qquad as the measure of forecast accuracy．That is，if we assume that the combination that is best for the \qquad will also be best for the
\qquad ，we would use the combination of number of data values and weights that minimizes MSE for the historical time series to forecast the next value in the time series．

Exponential Smoothing

1．Exponential smoothing also uses a weighted average of past time series values as a forecast；it is a special case of the weighted moving averages method in which we select \qquad －the weight for the \qquad observation．

2．The weights for the other data values are computed automatically and become smaller as the observations move farther into the past．

3．Exponential Smoothing Forecast

$$
\begin{equation*}
F_{t+1}= \tag{17.2}
\end{equation*}
$$

\qquad
where
F_{t+1} ：forecast of the time series for period $(t+1)$
Y_{t} ：actual value of the time series in period t
F_{t} ：forecast of the time series for period t
$\alpha: \quad(0 \leq \alpha \leq 1)$
4．Equation（17．2）shows that the forecast for period $t+1$ is a weighted average of the actual value in period t and the forecast for period t ．

5．The weight given to the actual value in period t is the smoothing constant \qquad and the weight given to the forecast in period t is \qquad ．

6．Let us illustrate by working with a time series involving only three periods of data： Y_{1}, Y_{2} ，and Y_{3} ．
（a）To initiate the calculations，we let F_{1} equal the actual value of the time series in period 1 ；that is，$F_{1}=Y_{1}$ ．Hence，the forecast for period 2 is

$$
F_{2}=
$$

We see that the exponential smoothing forecast for period 2 is equal to the actual value of the time series in period \qquad ．
（b）The forecast for period 3 is

$$
F_{3}=
$$

\qquad
（c）Finally，substituting this expression for F3 in the expression for F4，we obtain

$$
\begin{aligned}
F_{4} & =\alpha Y_{3}+(1-\alpha) F_{3} \\
& =\alpha Y_{3}+(1-\alpha)\left[\alpha Y_{2}+(1-\alpha) Y_{1}\right] \\
& =
\end{aligned}
$$

（d）We now see that F_{4} is a weighted average of the first three time series values． The sum of the coefficients，or weights，for Y_{1}, Y_{2} ，and Y_{3} equals 1 ．
（e）A similar argument can be made to show that，in general，any forecast F_{t+1} is a weighted average of all the previous time series values．

Question （p876）

Use exponential smoothing approach with a smoothing parameter $\alpha=0.2$ to obtain F_{2}, F_{3}, F_{4} and F_{13} for the gasoline sales time series in Table 17.1 and Figure 17．1． Start the calculations，set the exponential smoothing forecast for period 2 equal to the actual value of the time series in period 1 ．
sol：

TABLE 17．10 Summary of the Exponential Smoothing Forecasts and Forecast Errors for the Gasoline Sales Time Series with Smoothing Constant $\alpha=.2$

Week	Time Series Value	Forecast	Forecast Error	Squared Forecast Error
1	68			
2	84	68.00	16.00	256.00
3	76	71.20	4.80	23.04
4	92	72.16	19.84	393.63
5	72	76.13	-4.13	17.06
6	64	75.30	-11.30	127.69
7	80	73.04	6.96	48.44
8	72	74.43	-2.43	5.90
9	88	73.95	14.05	197.40
10	80	76.76	3.24	10.50
11	60	77.41	-17.41	303.11
12	88	73.92	14.08	$\underline{198.25}$
		Totals	$\mathbf{4 3 . 7 0}$	$\mathbf{1 5 8 1 . 0 2}$

FIGURE 17．8 Actual and Forecast Gasoline Sales Time Series with Smoothing Constant $\alpha=.2$

TABLE 17．11 Summary of the Exponential Smoothing Forecasts and Forecast Errors for the Gasoline Sales Time Series with Smoothing Constant $\alpha=.3$

Week	Time Series Value	Forecast	Forecast Error	Squared Forecast Error
1	68			
2	84	68.00	16.00	256.00
3	76	72.80	3.20	10.24
4	92	73.76	18.24	332.70
5	72	79.23	-7.23	52.27
6	64	77.06	-13.06	170.56
7	80	73.14	6.86	47.06
8	72	75.20	-3.20	10.24
9	88	74.24	13.76	189.34
10	80	78.37	1.63	2.66
11	60	78.86	-18.86	355.70
12	88	73.20	14.80	219.04
		Totals	32.14	$\underline{1645.81}$

1．Forecast Accuracy（Table 17．10）（Figure 17．8）（Table 17．11）The criterion we will use to determine a desirable value for the smoothing constant a is the same as the criterion we proposed for determining the order or number of periods of data to include in the moving averages calculation．That is，we choose the value of a that
\qquad ．

2．The exponential smoothing results with $\alpha=0.2$ ：the value of the sum of squared forecast errors is 98．80；hence \qquad ．The exponential smoothing results with $\alpha=0.3$ ：the value of the sum of squared forecast errors is 102.83 ；hence \qquad ．

3．Thus，we would be inclined to prefer the original smoothing constant of $\alpha=0.2$ ． Using a \qquad calculation with other values of α ，we can find a＂good value for the smoothing constant．

17．4 Trend Projection

1．We present two forecasting methods in this section that are appropriate for time series exhibiting a \qquad ．
（a）First，we show how \qquad can be used to forecast a time series with a linear trend．
（b）Next we show how the \qquad capability of regression analysis can also be used to forecast time series with a \qquad or \qquad trend．

Linear Trend Regression

1．（Table 17．12）（Figure 17．9）the bicycle sales time series：the linear trend line provides a reasonable approximation of the long－run movement in the series．

2．The estimated regression equation describing a \qquad relationship be－ tween an independent variable x and a dependent variable y is written as
where \hat{y} is the estimated or predicted value of y ．
3．To emphasize the fact that in forecasting the independent variable is time，we will replace \qquad with \qquad and \qquad with \qquad to emphasize that we are estimating the trend for a time series．

4．Linear Trend Equation

where
$T_{t}=$ linear trend forecast in period t
$b_{0}=$ intercept of the linear trend line
$b_{1}=$ slope of the linear trend line
$t=$ time period，$t=1(t=n)$ corresponding to the first time（most recent） series observation

5．Computing the Slope and Intercept for a Linear Trend

$$
\begin{align*}
b_{1} & = \\
& = \tag{17.5}\\
& \\
b_{0} & =
\end{align*}
$$

where
$Y_{t}=$ value of the time series in period t
$n=$ number of time periods（number of observations）
$\bar{Y}=$ average value of the time series
$\bar{t}=$ average value of t
6．Example the bicycle sales time series

TABLE 17．13 Summary of Linear Trend Calculations for the Bicycle Sales Time Series

	t	Y_{t}	$t-\bar{t}$	$Y_{t}-\bar{Y}$	$(t-\bar{t})\left(Y_{t}-\bar{Y}\right)$	$(t-\bar{t})^{2}$
	1	21.6	－4．5	－4．85	21.825	20.25
	2	22.9	－3．5	－3．55	12.425	12.25
	3	25.5	－2．5	－． 95	2.375	6.25
	4	21.9	－1．5	－4．55	6.825	2.25
	5	23.9	－． 5	－2．55	1.275	． 25
	6	27.5	． 5	1.05	． 525	． 25
	7	31.5	1.5	5.05	7.575	2.25
	8	29.7	2.5	3.25	8.125	6.25
	9	28.6	3.5	2.15	7.525	12.25
	10	31.4	4.5	4.95	22.275	20.25
Totals	55	264.5			90.750	82.50

（a）The linear trend equation is

$$
T_{t}=
$$

（b）The slope of 1.1 indicates that over the past 10 years the firm experienced an
\qquad of about \qquad per year．
（c）If we assume that the past 10－year trend in sales is a good indicator of the future，this trend equation can be used to develop forecasts for future time periods．For example，the next year＇s trend projection or forecast，T_{11} ．

$$
T_{11}=
$$

\qquad
Thus，using trend projection，we would forecast sales of 32,500 bicycles next year．

7．（Table 17．14）Use MSE to compute the accuracy associated with the trend projection forecasting method．

```
TABLE 17.14 Summary of the Linear Trend Forecasts and Forecast Errors for the Bicycle
        Sales Time Series
```

Year	Sales（1000s） $\boldsymbol{Y}_{\boldsymbol{t}}$	Forecast $\boldsymbol{T}_{\mathbf{t}}$	Forecast Error	Squared Forecast Error
1	21.6	21.5	.1	.01
2	22.9	22.6	.3	.09
3	25.5	23.7	1.8	3.24
4	21.9	24.8	-2.9	8.41
5	23.9	25.9	-2.0	4.00
6	27.5	27.0	.5	.25
7	31.5	28.1	3.4	11.56
8	29.7	29.2	.5	.25
9	28.6	30.3	-1.7	2.89
10	31.4	31.4	.0	.00
			Total	30.70

$$
M S E=
$$

\qquad
8．Because \qquad in forecasting is the same as the standard re－ gression analysis procedure applied to time－series data，we can use statistical soft－ ware to perform the calculations．

9．（Figure 17．11）the value of MSE in the ANOVA table is

$$
M S E=\frac{\text { Sum of Squares Due to Error }}{\text { Degrees of Freedom }}=
$$

FIGURE 17．11 Regression Output for the Bicycle Sales Time Series

Regression Analysis：Sales Versus Year					
Analysis of Variance					
Source	DF	Adj SS	Adj MS	F－Value	P －Value
Regression	1	99.82	99.825	26.01	． 001
Error	8	30.70	3.837		
Total	9	130.52			
Model Summary					
S	R－sq				
1.95895	76.4				
Coefficients					
Term	Coef	SE Coef	T－Value	P－Value	
Constant	20.40	1.34	15.24	． 000	
Year	1.10	． 216	5.10	． 001	
Regression Equation					
Sales $=20.40+1.100$ Year					

FIGURE 17．12 Time Series Linear Trend Analysis Output for the Bicycle Sales Time Series

$\begin{aligned} & \text { Variable } \\ & \text { — Sales } \\ & \text { Linear (Sales) } \end{aligned}$	
Accuracy Measures	
MAPE	5.06814
MAD	1.32000
MSE	3.07000

10．This value of MSE \qquad from the value of MSE that we computed previously because the sum of squared errors is divided by \qquad instead of \qquad ；thus， MSE in the regression output is not the \qquad ．

11．NOTE：Most forecasting packages，however，compute MSE by taking the average of the squared errors．Thus，when using time series packages to develop a trend equation，the value of MSE that is reported may differ slightly from the value you would obtain using a general regression approach．

Nonlinear Trend Regression

1．Example（Table 17．15）（Figure 17．13）Consider the annual revenue in millions of dollars for a cholesterol drug for the first 10 years of sales．

TABLE 17.15	
Cholesterol Revenue	
Time Series	（\＄Millions）
Year	Revenue
（t）	（\＄millions）
1	23.1
2	21.3
3	27.4
4	34.6
5	33.8
6	43.2
7	59.5
8	64.4
9	74.2
10	99.3

2．The time series plot indicates an \qquad or \qquad trend．A curvilinear function appears to be needed to model the long－term trend．

3．Quadratic Trend Equation A variety of nonlinear functions can be used to de－ velop an estimate of the trend for the cholesterol time series．For instance，consider the following quadratic trend equation：

4．（Figure 17．14）a portion of the multiple regression output for the quadratic trend model；

$$
\begin{array}{ll}
\text { FIGURE } 17.14 & \begin{array}{l}
\text { Quadratic Trend Regression Output for the Cholesterol Revenue } \\
\text { Time Series }
\end{array}
\end{array}
$$

Regression Analysis：Revenue Versus Year，YearSq
Analysis of Variance

Source	DF	Adj SS	Adj MS	F－Value	P－Value
Regression	2	5770.13	2885.06	182.52	.000
Error	7	110.65	15.81		
Total	9	5880.78			
Model Summary					

S	R －sq
3.97578	98.12%

Coefficients

Term	Coef	SE Coef	T－Value	P－Value
Constant	24.18	4.68	5.17	.001
Year	-2.11	1.95	-1.08	.317
YearSq	.922	.173	5.33	.001
Regression Equation				

$$
\text { Revenue }=24.18-2.11 \text { Year }+.922 \text { YearSq }
$$

The estimated regression equation is

$$
\text { Revenue (\$millions) }=24.18-2.11 \mathrm{Year}+0.922 \mathrm{YearSq}
$$

5．Exponential Trend Equation

6．Suppose $b_{0}=16.71$ ，and $b_{1}=0.1697, T_{t}$ is not increasing by a constant amount as in the case of the linear trend model but by a \qquad ．

7．In this exponential trend model，multiplicative factor is \qquad ，so the constant percentage increase from time period to time period is \qquad ．

8．Many statistical software packages have the capability to compute an exponential trend equation directly．Some software packages only provide linear trend，but by applying a natural \log transformation to both sides of the equality in equation（17．8） we can apply the equivalent linear form：
（Figure 17．15）

17．5 Seasonality and Trend

Seasonality Without Trend

1．Example（Table 17．16）（Figure 17．16）Consider the number of umbrellas sold at a clothing store over the past five years．

FIGURE 17．16 Umbrella Sales Time Series Plot

TABLE 17.16		
Umbrella Sales Time Series		
Year	Quarter	Sales
1	1	125
	2	153
	3	106
	4	88
2	1	118
	2	161
	3	133
	4	102
3	1	138
	2	144
	3	113
4	4	80
	1	109
	2	137
	3	125
5	4	109
	1	130
	2	165
	3	128
	4	96

2．The time series plot does not indicate any \qquad trend in sales．The first and third quarters have moderate sales，the second quarter has the highest sales， and the fourth quarter tends to be the lowest quarter in terms of sales volume． Thus，we would conclude that a \qquad pattern is present．

3．Just like using \qquad to deal with an independent variable in a standard regression analysis，we can use the same approach to model a time series with a seasonal pattern by treating the season as a \qquad ．

4．Recall that when a categorical variable has k levels， \qquad dummy variables are required．Thus，to model the \qquad in the umbrella time series we need $4-1=3$ dummy variables：

$$
\operatorname{Qtr} 1=\left\{\begin{array}{lc}
1 & \text { if Quarter 1 } \\
0 & \text { otherwise }
\end{array}, Q \operatorname{tr} 2=\left\{\begin{array}{cc}
1 & \text { if Quarter } 2 \\
0 & \text { otherwise }
\end{array}, Q \operatorname{tr} 3=\left\{\begin{array}{cc}
1 & \text { if Quarter } 3 \\
0 & \text { otherwise }
\end{array}\right.\right.\right.
$$

5．Using \hat{Y} to denote the estimated or forecasted value of sales，the general form of the estimated regression equation relating the number of umbrellas sold to the quarter
the sales take place：

6．（Table 17．17）the umbrella sales time series with the coded values of the dummy variables．

TABLE 17．17 Umbrella Sales Time Series with Dummy Variables

Year	Quarter	Qtr1	Qtr2	Qtr3	Sales
1	1	1	0	0	125
	2	0	1	0	153
	3	0	0	1	106
	4	0	0	0	88
2	1	1	0	0	118
	2	0	1	0	161
	3	0	0	1	133
	4	0	0	0	102
3	1	1	0	0	138
	2	0	1	0	144
	3	0	0	1	113
	4	0	0	0	80
4	1	1	0	0	109
	2	0	1	0	137
	3	0	0	1	125
	4	0	0	0	109
5	1	1	0	0	130
	2	0	1	0	165
	3	0	0	1	128
	4	0	0	0	96

7．（Figure 17．17）the computer output：the estimated multiple regression equation obtained is

$$
\text { Sales }=95.00+29.00 \text { Qtr } 1+57.00 \text { Qtr } 2+26.00 \text { Qtr } 3
$$

We can use this equation to forecast quarterly sales for next year．
Quarter 1：Sales $=95.0+29.0(1)+57.0(0)+26.0(0)=124$.
Quarter 2：Sales $=95.0+29.0(0)+57.0(1)+26.0(0)=152$ ．
Quarter 3：Sales $=95.0+29.0(0)+57.0(0)+26.0(1)=121$.
Quarter 4：Sales $=95.0+29.0(0)+57.0(1)+26.0(0)=95$.

FIGURE 17．17 Regression Output for the Umbrella Sales Time Series

Term	Coef	SE Coef	T－Value	P－Value
Constant	95.00	5.06	18.76	.000
Qtr1	29.00	7.16	4.05	.001
Qtr2	57.00	7.16	7.96	.000
Qtr3	26.00	7.16	3.63	.002
Regression Equation				
Sales $=95.00+29.00$ Qtr1 +57.00 Qtt2 +26.00 Qtr3				

8．The regression output shown in Figure 17.17 provides additional information that can be used to assess the \qquad of the forecast and determine the of the results．

Seasonality and Trend

1．Example（Table 17．18）（Figure 17．18）The quarterly smartphone sales．

2．The sales are lowest in the second quarter of each year and increase in quarters 3 and 4．Thus，we conclude that a \qquad exists for smartphone sales．

3．But the time series also has an \qquad that will need to be ac－ counted for in order to develop accurate forecasts of quarterly sales．

4．This is easily handled by combining the \qquad for season－ ality with the time series \qquad for hand－ling linear trend．

5．The general form of the estimated multiple regression equation for modeling both the quarterly seasonal effects and the linear trend in the smartphone time series：
where

$$
\hat{Y}_{t}=\text { estimate or forecast of sales in time period } t
$$

$Q \operatorname{tr} 1=1(Q \operatorname{tr} 2=1)(Q \operatorname{tr} 3=1)$ if time period t corresponds to the first （second）（third）quarter of the year； 0 otherwise．

6．（Table 17．19）revised smartphone sales time series that includes the coded values of the dummy variables and the time period t ．

TABLE 17.19	Smartphone Sales Time Series with Dummy Variables and Time Period					
Year	Quarter	Qtr1	Qtr2	Qtr3	Period	Sales（1000s）
1	1	1	0	0	1	4.8
	2	0	1	0	2	4.1
	3	0	0	1	3	6.0
2	4	0	0	0	4	6.5
	1	1	0	0	5	5.8
	2	0	1	0	6	5.2
	3	0	0	1	7	6.8
3	4	0	0	0	8	7.4
	1	1	0	0	9	6.0
	2	0	1	0	10	5.6
	3	0	0	1	11	7.5
4	4	0	0	0	12	7.8
	1	1	0	0	13	6.3
	2	0	1	0	14	5.9
	3	0	0	1	15	8.0
		0	0	0	16	8.4

7．（Figure 17．19）The estimated multiple regression equation is

$$
\begin{equation*}
\operatorname{Sales}(1000 s)=6.069-1.363 Q \operatorname{tr} 1-2.034 Q \operatorname{tr} 2-0.304 Q \operatorname{tr} 3+0.1456 t \tag{17.9}
\end{equation*}
$$

8．Forecast for Time Period 17 （Quarter 1 in Year 5）：

$$
\operatorname{Sales}(1000 s)=6.069+1.363(1)+2.034(0)+0.304(0)+0.1456(17)=7.18
$$

Thus，accounting for the seasonal effects and the linear trend in smartphone sales， the estimates of quarterly sales in year 5 are $7180,6660,8530$ ，and 8980.

9．The dummy variables in the estimated multiple regression equation actually provide regression equations，one for each quarter．If time period t corresponds to quarter 1 ，the estimate of quarterly sales is

$$
\begin{aligned}
\text { Quarter } 1: \text { Sales } & =6.069-1.363(1)-2.034(0)-0.304(0)+0.1456(t) \\
& =4.71+0.1456 t \\
\text { Quarter } 2: \text { Sales } & =4.04+0.1456 t \\
\text { Quarter } 3: \text { Sales } & =5.77+0.1456 t \\
\text { Quarter } 4: \text { Sales } & =6.07+0.1456 t
\end{aligned}
$$

10．The \qquad of the trend line for each quarterly forecast equation is \qquad ，
indicating a \qquad in sales of about 146 sets per quarter．

11．The intercept for the Quarter 1 equation is 4.71 and the intercept for Quarter 4 equa－ tion is 6．07．Thus，sales in Quarter 1 are \qquad or \qquad
\qquad in Quarter 4.

12．The estimated regression coefficient for $Q \operatorname{tr} 1$ in equation（17．9）provides an estimate of the difference in sales between Quarter \qquad and Quarter \qquad ．

13．Similar interpretations can be provided for \qquad ，the estimated regression coefficient for dummy variable Qtr2，and \qquad ，the estimated regression coefficient for dummy variable $Q t r 3$ ．

Models Based on Monthly Data

1．For monthly data，season is a categorical variable with 12 levels and thus \qquad dummy variables are required．

$$
\text { Month } 1=\left\{\begin{array}{ll}
1 & \text { if January } \\
0 & \text { otherwise }
\end{array}, \ldots, \text { Month } 11=\left\{\begin{array}{cc}
1 & \text { if November } \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

2．Other than this change，the multiple regression approach for handling seasonality remains \qquad －．

17．6 Time Series Decomposition＊

Chapter 17：Time Series Analysis and Forecasting

© EXERCISES

$17.2: 1,4$
$17.3: 5,9,11,14$
17.4 ：17，20，22， 26
$17.5: 28,30,33$
SUP ：41，44， 47
＂有時候壞事是注定要發生，而我們卻無能為力。那我們何必擔心呢？＂
＂Look，sometimes bad things happen —and there＇s nothing you can do about it．So why worry？＂
—獅子王（The Lion King，2019）

統計學（一）

Anderson＇s Statistics for Business \＆Economics（14／E）

Chapter 18：Nonparametric Methods

上課時間地點：二 D56，商館 260206
授課教師：吳漢銘（國立政治大學統計學系副教授）
教學網站：http：／／www．hmwu．idv．tw

系級： \qquad學號： \qquad姓名： \qquad

Overview

1．The statistical methods for inference presented previously are \qquad ．

2．The parametric methods begin with an \qquad about the probability dis－ tribution of the \qquad which is often that the population has a \qquad distribution．

3．Based upon this assumption，statisticians are able to derive the that can be used to make \qquad about one or more parameters of the pop－ ulation，such as the population mean or the population standard deviation．
（a）（Recall Chapter 9）An inference about a population mean that was based on an assumption that the population had a normal probability distribution with unknown parameters μ and σ ．
（b）Using the sample standard deviation s to estimate the population standard deviation σ ．
（c）The test statistic for making an inference about the population mean was shown to have a t distribution．
（d）The t distribution was used to compute confidence intervals and conduct hy－ pothesis tests about the mean of a normally distributed population．

4．In this chapter we present \qquad methods which can be used to make inferences about a population without requiring an assumption about the specific form of the population＇s probability distribution．
（a）（First section）how the binomial distribution uses two categories of data to make an inference about a \qquad ．
（b）（Next three sections）how \qquad data are used in nonparametric tests about two or more populations．
（c）（Final section）use rank－ordered data to compute the \qquad for two variables．

5．For this reason，these nonparametric methods are also called \qquad ．

6．The computations used in the nonparametric methods are generally done with ．Whenever the data are quantitative，we will transform the data into categorical data in order to conduct the nonparametric test．

18．1 Sign Test

Hypothesis Test About a Population Median

1．The \qquad provides a nonparametric procedure for testing a hypothesis about the value of a \qquad ．

2．If we consider a population where \qquad is exactly equal to the median， the median is the measure of \qquad that divides the population so that \qquad of the values are greater than the median and \qquad of the values are less than the median．

3．Whenever a population distribution is \qquad ，the median is often preferred over the mean as the best measure of central location for the population．

4．Example The weekly sales of Cape May Potato Chips by the Lawler Grocery Store chain．
（a）Lawler＇s management made the decision to carry the new potato chip product based on the manufacture＇s estimate that the \qquad should be $\$ 450$ per week on a per store basis．
（b）（Table 18．1）After carrying the product for three－months，Lawler＇s manage－ ment requested the following hypothesis test about the population median weekly sales：

$$
\begin{array}{lll}
H_{0}: & \text { Median }=450 \\
H_{a}: & \text { Median } \neq 450
\end{array}
$$

TABLE 18．1 One－Week Sales of Cape May Potato Chips at 10 Lawler Grocery Stores

Store Number	Weekly Sales（\＄）	Store Number	Weekly Sales（\＄）
56	485	63	474
19	562	39	662
36	415	84	380
128	860	102	515
12	426	44	721

（c）（Table 18．2）In conducting the sign test，we compare each sample observation to the \qquad of the population median．
i．If the observation is greater than the hypothesized value，we record a plus sign \qquad
ii．If the observation is less than the hypothesized value，we record a minus sign \qquad
iii．If an observation is exactly equal to the hypothesized value，the observa－ tion is \qquad from the sample and the analysis proceeds with the smaller sample size，using only the observations where a plus sign or a minus sign has been recorded．
\(\left.$$
\begin{array}{l}\text { TABLE 18．2 }\end{array}
$$ \begin{array}{l}Lawler Sample Data for the Sign Test About the Population

Median Weekly Sales\end{array}\right]\)| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Store Number | Weekly Sales（\＄） | Sign | Store Number | Weekly Sales（\＄） | Sign |
| 56 | 485 | + | 63 | 474 | + |
| 19 | 562 | + | 39 | 662 | + |
| 36 | 415 | - | 84 | 380 | - |
| 128 | 860 | + | 102 | 515 | + |
| 12 | 426 | - | 44 | 721 | + |

（d）Note that there are 7 plus signs and 3 minus signs．
5．The assigning of the plus signs and minus signs has made the situation a \qquad
\qquad application．The sample size \qquad is the number of trials． There are two outcomes possible per trial，a \qquad sign or a \qquad sign， and the trials are independent．Let \qquad denote the probability of a plus sign．

6．If the population median is $450, p$ would equal \qquad as there should be 50% plus signs and 50% minus signs in the population．Thus，in terms of the binomial probability p ，the sign test hypotheses about the population median are converted to the following hypotheses about the binomial probability p ．

$$
\begin{aligned}
& H_{0}: \text { Median }=450 \\
& H_{a}: \text { Median } \neq 450
\end{aligned} \Rightarrow
$$

（a）If H_{0} cannot be rejected，we cannot conclude that p is different from 0.50 and thus we cannot conclude that the population median is different from 450.
（b）If H_{0} is rejected，we can conclude that p is not equal to 0.50 and thus the population median is not equal to 450 ．

7．（Table 5 in Appendix B）（Table 18．3）（Figure 18．1）With $n=10$ stores or trials and $p=0.50$ ，obtain the binomial probabilities for the number of plus signs under the assumption H_{0} is true． \qquad ）

TABLE 18．3 Binomial Probabilities with $n=10$ and $p=.50$

（a）Use a 0.10 level of significance for the test．
（b）Since the observed number of plus signs for the sample data，7，is in the upper tail of the binomial distribution，we compute the probability of obtaining 7 or more plus signs
（c）Since we are using a two－tailed hypothesis test，this upper tail probability is doubled to obtain the \qquad ．
（d）With \qquad ，we cannot reject H_{0} ．In terms of the binomial prob－ ability p ，we cannot reject $H_{0}: p=0.50$ ，and thus we cannot reject the hypothesis that the population median is $\$ 450$ ．

8．The one－tailed sign tests about a population median：
（a）Formulated the hypotheses as an \qquad ：

$$
\begin{array}{lll}
H_{0} & : \text { Median } \leq 450 \\
H_{a} & : \text { Median }>450
\end{array}
$$

（b）The corresponding p－value is equal to the binomial probability that the number of plus signs is \qquad found in the sample．
（c）This one－tailed p－value： \qquad －
（d）If the example were converted to a lower tail test，the p－value would have been the probability of obtaining 7 or fewer plus signs．
（e）The binomial probabilities provided in Table 5 of Appendix B can be used to compute the p－value when the sample size is \qquad ．
（f）With larger sample sizes，we rely on the of the binomial distribution to compute the p－value；this makes the computa－ tions quicker and easier．

Use the Normal Distribution to Approximate the Binomial Prob－ ability

1．Example One year ago the median price of a new home was $\$ 236,000$ ．However，a current downturn in the economy has real estate firms using sample data on recent home sales to determine if the population median price of a new home is less today than it was a year ago．
（a）The hypothesis test about the population median price of a new home is as follows：
H_{0} ：
H_{a} ： \qquad
（b）We will use a 0.05 level of significance to conduct this test．A random sample of \qquad recent new home sales found \qquad homes sold for more than \＄236，000， \qquad homes sold for less than $\$ 236,000$ ，and \qquad home sold for $\$ 236,000$ ．
（c）After deleting the home that sold for the hypothesized median price of $\$ 236,000$ ， the sign test continues with 22 plus signs， 38 minus signs，and a sample of
\qquad ．
（d）The null hypothesis that the population median is greater than or equal to $\$ 236,000$ is expressed by the binomial distribution hypothesis \qquad ．
（e）If H_{0} were true as an equality，we would expect \qquad homes to have a plus sign．
（f）The sample result showing 22 plus signs is in the lower tail of the binomial distribution．Thus，the p－value is the probability of \qquad when $p=0.50$ ．
（g）While it is possible to compute the exact binomial probabilities for $0,1,2, \ldots$ to 22 and sum these probabilities，we will use the normal distribution approx－ imation of the binomial distribution to make this computation easier．

2．Normal approximation of the sampling distribution of the number of plus

 signs when $H_{0}: p=0.50$ ：For this approximation（ \qquad ），the mean and standard deviation of the normal distribution are：$$
\begin{equation*}
\text { Mean : } \mu= \tag{18.1}
\end{equation*}
$$

\qquad
Standard deviation ：$\sigma=$ \qquad
3．With $n=60$ homes and $p=0.50$ ，the sampling distribution of the number of plus signs can be approximated by a normal distribution with

$$
\mu=0.50 n=\quad \sigma=\sqrt{0.25 n}=
$$

\qquad
4．The binomial probability distribution is discrete and the normal probability distri－ bution is continuous．To account for this，the binomial probability of 22 is com－ puted by the normal probability interval \qquad ．The 0.5 added to and subtracted from 22 is called the \qquad factor．

5．Thus，to compute the p－value for 22 or fewer plus signs we use the normal distribu－ tion with $\mu=30$ and $\sigma=3.873$ to compute the probability that the normal random variable，X ，has a value less than or equal to 22.5 ．

6．（Figure 18．2）Using this normal distribution，we compute the p－value as follows：

$$
p \text {-value }=
$$

7．With $0.0262<0.05$ ，we \qquad the null hypothesis and conclude that the median price of a new home is \qquad the $\$ 236,000$ median price a year ago．

$$
\begin{array}{ll}
\text { FIGURE 18.2 } & \begin{array}{l}
\text { Normal Distribution Approximation of the } p \text {-Value for the Sign } \\
\text { Test About the Median Price of New Homes }
\end{array}
\end{array}
$$

Hypothesis Test with Matched Samples

1．（Recall Chapter 10）Using \qquad and assuming that the differ－ ences between the pairs of matched observations were \qquad distributed， the \qquad distribution was used to make an inference about the difference between the means of the two populations．

2．Use the nonparametric sign test to analyze \qquad data．the sign test enables us to analyze categorical as well as quantitative data and requires no assumption about the distribution of the differences．

3．This type of matched－sample design occurs in \qquad when a sample of n potential customers is asked to compare two brands of a product such as coffee，soft drinks，or detergents．Without obtaining a quantitative measure of each individual＇s preference for the brands，each individual is asked to state a brand preference．

4．Example Sun Coast Farms produces an orange juice product called Citrus Val－ ley．The primary competition for Citrus Valley comes from the producer of an orange juice known as Tropical Orange．In a consumer preference comparison of the two brands， 14 individuals were given unmarked samples of the two orange juice products．The brand each individual tasted first was selected randomly．
（a）If the individual selected Citrus Valley as the more preferred，a \qquad was recorded．
（b）If the individual selected Tropical Orange as the more preferred，a \qquad was recorded．
（c）If the individual was unable to express a difference in preference for the two products， \qquad was recorded．

5．（Table 18．4）Deleting the two individuals who could not express a preference for either brand，the data have been converted to a sign test with \qquad signs and
\qquad signs for the \qquad individuals who could express a preference for one of the two brands．

TABLE 18．4 Preference Data for the Sun Coast Farms Taste Test

Individual	Preference	Sign	Individual	Preference	Sign
1	Tropical Orange	-	8	Tropical Orange	-
2	Tropical Orange	-	9	Tropical Orange	-
3	Citrus Valley	+	10	No Preference	
4	Tropical Orange	-	11	Tropical Orange	-
5	Tropical Orange	-	12	Citrus Valley	+
6	No Preference		13	Tropical Orange	-
7	Tropical Orange	-	14	Tropical Orange	-

6．Letting \qquad indicate the proportion of the population of customers who prefer Citrus Valley orange juice，we want to test the hypotheses that there is no difference between the preferences for the two brands as follows：

7．If H_{0} cannot be rejected，we cannot conclude that there is a difference in preference for the two brands．However，if H_{0} can be rejected，we can conclude that the consumer preferences differ for the two brands．

8．（Table 18．5）We will conduct the sign test $(\alpha=0.05)$ ．The sampling distribution for the number of plus signs is a \qquad distribution with $p=0.50$ and $n=12$ ．
\qquad ）

TABLE 18．5 Binomial Probabilities with $n=12$ and $p=.50$

| Number of
 Plus Signs | Probability |
| :---: | :---: | :---: |
| 0 | .0002 |
| 1 | .0029 |
| 2 | .0161 |
| 3 | .0537 |
| 4 | .1208 |
| 5 | .1934 |
| 6 | .2256 |
| 7 | .1934 |
| 8 | .1208 |
| 9 | .0537 |
| 10 | .0161 |
| 11 | .0029 |
| 12 | .0002 |

9．Under the assumption H_{0} is true，we would expect \qquad plus signs．With only two plus signs in the sample，the results are in the \qquad of the binomial distribution．

10．To compute the p－value for this two－tailed test，we first compute the probability of 2 or fewer plus signs and then \qquad this value．Using the binomial probabilities of 0,1 ，and 2 shown in Table 18．5，the p－value is

$$
p \text {-value }=
$$

\qquad

11．We reject H_{0} ．The taste test provides evidence that consumer preference for the two brands of orange juice．We would advise Sun Coast Farms of this result and conclude that the competitor＇s Tropical Orange product is the more preferred． Sun Coast Farms can then pursue a strategy to address this issue．

12．Similar to other uses of the sign test，one－tailed tests may be used depending upon the application．

13．As the sample size becomes large，the \qquad of the binomial distribution will ease the computation．

14．While the Sun Coast Farms sign test for matched samples used categorical preference data，the sign test for matched samples can be used with \qquad data as well．
（a）This would be particularly helpful if the \qquad are \qquad distributed and are \qquad ．
（b）In this case a positive difference is assigned a plus sign，a negative difference is assigned a negative sign，and a zero difference is removed from the sample．
（c）The sign test computations proceed as before．

18．2 Wilcoxon Signed－Rank Test

1．（Recall Chapter 10）The parametric test for the \qquad experiment requires quantitative data and the assumption that the \qquad between the paired observations are normally distributed．The \qquad can then be used to make an inference about the difference between the means of the two populations．

2．The \qquad test is a nonparametric procedure for analyzing data from a \qquad ．The test uses but does not require the assumption that the differences between the paired obser－ vations are normally distributed．

3．It only requires the assumption that the \qquad between the paired obser－ vations have a \qquad distribution．

4．This occurs whenever the \qquad of the two populations are the same and the focus is on determining if there is a difference between the \qquad of the two populations．

5．Example Production Task Completion Times：Consider a manufacturing firm that is attempting to determine whether two production methods differ in terms of task completion time．
（a）（Table 18．6）Using a matched－samples experimental design， 11 randomly se－ lected workers completed the production task two times，once using method A and once using method B．The production method that the worker used first was randomly selected．

TABLE 18．6 Production Task Completion Times（Minutes）

	Method		
Worker	A	B	Difference
1	10.2	9.5	.7
2	9.6	9.8	-.2
3	9.2	8.8	.4
4	10.6	10.1	.5
5	9.9	10.3	-.4
6	10.2	9.3	.9
7	10.6	10.5	.1
8	10.0	10.0	.0
9	11.2	10.6	.6
10	10.7	10.2	.5
11	10.6	9.8	.8

（b） A \qquad difference indicates that method A required more time；a
\qquad difference indicates that method B required more time．
（c）Do the data indicate that the two production methods differ significantly in terms of completion times？If we assume that the differences have a \qquad distribution but not necessarily a normal distribution，the Wilcoxon signed－ rank test applies．
（d）In particular，we will use the Wilcoxon signed－rank test for the difference between the \qquad completion times for the two production methods．
H_{0} ：
$H_{a}:$ Median for method $\mathrm{A}-$ Median for method $\mathrm{B} \neq 0$
（e）If H_{0} cannot be rejected，we will not be able to conclude that the median completion times are different．However，if H_{0} is rejected，we will conclude that the median completion times are different．

6．The Wilcoxon signed－rank test steps $(\alpha=0.05)$ ：
（a）Discard the difference of \qquad for worker 8 and then compute the \qquad
\qquad for the remaining 10 workers．
（b）Rank these absolute differences from \qquad ．The first（second） smallest absolute difference of 0.1 （0．2）for worker $7(2)$ is assigned the rank of 1 （2）．This ranking of absolute differences continues with the largest absolute difference of 0.9 for worker 6 being assigned the rank of 10 ．The \qquad absolute differences of $0.4(0.5)$ for workers 3 and 5 （4 and 10）are assigned the
\qquad of 3.5 （5．5）．
（c）（Table 18．7）Each rank is given the \qquad of the original difference for the worker．
$\begin{array}{ll}\text { TABLE 18．7 } & \begin{array}{l}\text { Ranking the Absolute Differences and the Signed Ranks for the } \\ \text { Production Task Completion Times }\end{array}\end{array}$

	Absolute				Signed Ranks	
Worker	Difference	Difference	Rank	Negative	Positive	
1	.7	.7	8		8	
2	-.2	.2	2	-2		
3	.4	.4	3.5		3.5	
4	.5	.5	5.5		5.5	
5	-.4	.4	3.5	-3.5		
6	.9	.9	10		10	
7	.1	.1	1	1		
8	.0	.6	7	7		
9	.6	.5	5.5	5.5		
10	.5	.8	9	9		
11	.8		Sum of Positive Signed Ranks	$T^{+}=\frac{49.5}{}$		

（d）Let \qquad denote the sum of the positive signed ranks $\left(T^{+}=49.5\right)$ ．We will use T^{+}as the Wilcoxon signed－rank test statistic．
（e）Sampling Distribution of T^{+}for the Wilcoxon Signed－Rank Test：If the medians of the two populations are equal and the number of matched pairs is 10 or more，the sampling distribution of T^{+}can be approximated by a \qquad ：

$$
\begin{equation*}
\text { Mean : } \mu_{T^{+}}= \tag{18.3}
\end{equation*}
$$

$$
\begin{equation*}
\text { Standard deviation : } \sigma_{T^{+}}= \tag{18.4}
\end{equation*}
$$

Distribution Form：Approximately normal for \qquad ．

7．Example Production Task Completion Times：
（a）After discarding the observation of a zero difference for worker 8 ，the analysis continues with the $n=10$ matched pairs．

$$
\begin{aligned}
\mu_{T^{+}} & =\frac{n(n+1)}{4}= \\
\sigma_{T^{+}} & =\sqrt{\frac{n(n+1)(2 n+1)}{24}}=27.5
\end{aligned}
$$

$$
=9.8107
$$

（b）（Figure 18．3）The sampling distribution of the T^{+}test statistic．

（c）Compute the two－tailed p－value for the hypothesis that the median comple－ tion times for the two production methods are equal．Since the test statistic $T^{+}=49.5$ is in the \qquad of the sampling distribution，we begin by computing the upper tail probability \qquad ．
（d）Since the sum of the positive ranks T^{+}is discrete and the normal distribu－ tion is continuous，we will obtain the best approximation by including the
\qquad factor．Thus，the discrete probability of \qquad is approximated by the normal probability interval， \qquad ，and the probability that $T^{+} \geq 49.5$ is approximated by：

$$
P\left(T^{+} \geq 49.5\right)=
$$

（e）Using the standard normal distribution table and $z=2.19$ ，we see that the two－tailed p－value $=$ \qquad ．With the p－value ≤ 0.05 ，we reject H_{0} and conclude that the median completion times for the two produc－ tion methods are not equal．
（f）With T^{+}being in the upper tail of the sampling distribution，we see that method A led to the longer completion times．We would expect management to conclude that method B is the faster or better production method．

8．One－tailed Wilcoxon signed－rank tests are possible．For example，if initially we had been looking for statistical evidence to conclude method A had the larger median completion time than method B：

$$
\begin{aligned}
& H_{0}: \overline{\text { Median for method } \mathrm{A}-\text { Median for method } \mathrm{B}>0} \\
& H_{a}:
\end{aligned}
$$

9．（Recall Section 18．1）the sign test could be used for both a hypothesis test about a population median and a hypothesis test with matched samples．

10．The Wilcoxon signed－rank test can also be used for a nonparametric test about a \qquad ．This test makes no assumption about the population distribution other than that it is \qquad －

11．If this symmetric assumption is appropriate，the Wilcoxon signed－rank test is the preferred nonparametric test for a population median．However，if the population is \qquad ，the sign test is preferred．

12．With the Wilcoxon signed－rank test，the differences between the \qquad and the \qquad of the population median are used instead of the differences between the matched－pair observations．

13．NOTES＋COMMENTS：
（a）The Wilcoxon signed－rank test for a population median is based on the assump－ tion that the population is symmetric．With this assumption，the population
\qquad is equal to the population \qquad ．Thus，the Wilcoxon signed－ rank test can also be used as a test about the
（b）There are several variations of the Wilcoxon signed－rank test that generally provide similar but not identical results．The test we use in section 18.2 is based on a \qquad （which is much easier to calculate）．
（c）JMP uses the exact Wilcoxon signed－rank test when $n \leq 20$ and a Student＇s t approximation when $n>20$ ．

18．3 Mann－Whitney－Wilcoxon（MWW）Test

1．（Recall Chapter 10）A hypothesis test（ t－test）about the difference between the means of two populations using two independent samples：
（a）This parametric test required \qquad data and the assumption that both populations had a \qquad distribution．
（b）If population standard deviations σ_{1} and σ_{2} were unknown，the sample stan－ dard deviations s_{1} and s_{2} provided estimates of σ_{1} and σ_{2} ．
（c）The t distribution was used to make an \qquad about the difference between the means of the two populations．

2．We present a nonparametric test for the difference between two populations based on two independent samples．It can be used with either \qquad data or data and it does not require the assumption that the populations have a normal distribution．

3．Versions of the test were developed jointly by Mann and Whitney and also by Wilcoxon．As a result，the test has been referred to as the \qquad and the \qquad ．The tests are equivalent and both ver－ sions provide the same conclusion．We will refer to this nonparametric test as the \qquad test（e．g．，a two－tailed test）：
H_{0} ：The two populations are \qquad
H_{a} ：The two populations are not identical
（i．e．，either population may provide the smaller or larger values．）

4．If H_{0} is rejected，we are using the test to conclude that the populations are not identical and that population 1 tends to provide either \qquad values than population 2.

5．（Figure 18．4）A situation where population 1 tends to provide smaller values than population 2．（Note that it is not necessary that all values from population 1 be less than all values from population 2．）

FIGURE 18．4 Two Populations Are Not Identical with Population 1 Tending to Provide the Smaller Values

6．First illustrate the MWW test using \qquad with \qquad ． Later，we will introduce a \qquad approximation based on the \qquad distribution that will simplify the calculations required by the MWW test．

7．Example Consider the on－the－job performance ratings for employees at a Showtime Cinemas 20－screen multiplex movie theater．
（a）During an employee performance review，the theater manager rated all 35 employees from best（rating 1）to worst（rating 35）in the theater＇s annual report．Knowing that the part－time employees were primarily college and high school students，the district manager asked if there was evidence of a significant difference in performance for college students compared to high school students．
（b）In terms of the population of college students and the population of high school students who could be considered for employment at the theater，the hypotheses were：
H_{0} ：College and high school student populations are identical in terms of performance
H_{a} ：College and high school student populations are not identical in terms of performance
（c）（Table 18．8）The theater manager＇s overall performance rating based on all 35 employees was recorded for each of these employees．

$$
\begin{array}{ll}
\text { TABLE 18.8 } & \begin{array}{l}
\text { Performance Ratings for a Sample of College Students and a } \\
\text { Sample of High School Students Working at Showtime Cinemas }
\end{array}
\end{array}
$$

College Student	Manager＇s Performance Rating	High School Student	Manager＇s Performance Rating
1	15	1	18
2	3	2	20
3	23	3	32
4	8	4	9
		5	25

（d）（Table 18．9）（The combined－sample ranks）Use a 0.05 level of significance for this test and \qquad the combined samples \qquad －

$$
\begin{array}{ll}
\text { TABLE 18.9 } & \begin{array}{l}
\text { Ranks for the Nine Students in the Showtime Cinemas } \\
\text { Combined Samples }
\end{array}
\end{array}
$$

College Student	Manager＇s Performance Rating	Rank	High School Student	Manager＇s Performance Rating	Rank
1	15	4	1	18	5
2	3	1	2	20	6
3	23	7	3	32	9
4	8	2	4	9	3
	Sum of Ranks	$\underline{14}$	5	25	$\frac{8}{31}$
				Sum of Ranks	

（e）Sum the ranks for each sample as shown in Table 18．9．The sum of ranks for the first sample will be the test statistic W for the MWW test：$W=$ $4+1+7+2=14$.
（f）We will always follow the procedure of using the sum of the ranks for \qquad as the \qquad ．

8．Why the sum of the ranks will help us select between the two hypotheses：H_{0} ：The two populations are identical and H_{a} ：The two populations are not identical．
（a）Letting C denote a college student and H denote a high school student，suppose the ranks of the nine students had the following order with the four college students having the four lowest ranks．

$$
\begin{array}{cccccccccc}
\text { Rank } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { Student } & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H}
\end{array}
$$

（b）Notice that this permutation or ordering separates the two samples，with the college students all having a \qquad than the high school students．
（c）This is a strong indication that the two populations are \qquad ．The sum of ranks for the college students in this case is \qquad ．
（d）Now consider a ranking where the four college students have the four highest ranks．

$$
\begin{array}{cccccccccc}
\text { Rank } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { Student } & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C}
\end{array}
$$

This is another strong indication that the two populations are not identical． The sum of ranks for the college students in this case is \qquad ．
（e）Thus，we see that the \qquad for the college students must be between 10 and 30．Values of \qquad imply that college students have lower ranks than the high school students，whereas values of \qquad imply that college students have higher ranks than the high school students．
（f）Either of these extremes would signal the two populations are not identical． However，if the two populations are identical，we would expect a \qquad in the ordering of the C＇s and H＇s so that the sum of ranks W is closer to the
\qquad of the two extremes，or nearer to \qquad ．

9．（Figure 18．5）（Table 18．10）Making the assumption that the two populations are identical，we used a computer program to compute \qquad for the nine students．For each ordering，we computed the for the college students．This provided the probability distribution showing the exact sampling distribution of W ．

FIGURE 18．5 Exact Sampling Distribution of the Sum of the Ranks for the Sample of College Students

TABLE 18．10 Probabilities for the Exact Sampling Distribution of the Sum of the Ranks for the Sample of College Students

\boldsymbol{w}	Probability	\boldsymbol{w}	Probability
10	.0079	20	.0952
11	.0079	21	.0873
12	.0159	22	.0873
13	.0238	23	.0714
14	.0397	24	.0635
15	.0476	25	.0476
16	.0635	26	.0397
17	.0714	27	.0238
18	.0873	28	.0159
19	.0873	29	.0079
		30	.0079

10．Use the sampling distribution of W in Figure 18.5 to compute the p－value for the test．Table 18.9 shows that the sum of ranks for the four college student is
\qquad ．Because this value of W is in the \qquad of the sampling distribution，we begin by computing the lower tail probability \qquad ：

$$
\begin{aligned}
P(W \leq 14) & =P(10)+P(11)+P(12)+P(13)+P(14) \\
& =0.0079+0.0079+0.0159+0.0238+0.0397=0.0952
\end{aligned}
$$

11．The two－tailed p－value \qquad ．With $\alpha=0.05$ as the level of significance and p－value >0.05 ，the MWW test conclusion is that we cannot reject
the null hypothesis that the populations of college and high school students are identical．

12．Use the same combined－sample ranking procedure and use the \qquad distri－ bution approximation of W to compute the p－value and draw the conclusion．

13．Example Third National Bank．
（a）The bank manager is monitoring the balances maintained in checking accounts at two branch banks and is wondering if the populations of account balances at the two branch banks are identical．
（b）（Table 18．11）Two independent samples of checking accounts are taken with sample sizes $n_{1}=12$ at branch 1 and $n_{2}=10$

TABLE 18．11 Account Balances for Two Branches of Third National Bank

Branch 1		Branch 2	
Account	Balance（\＄）	Account	Balance（\＄）
1	1095	1	885
2	955	2	850
3	1200	3	915
4	1195	4	950
5	925	5	800
6	950	6	750
7	805	7	865
8	945	8	1000
9	875	9	1050
10	1055	10	935
11	1025		
12	975		

（c）（Table 18．12）The first step in the MWW test is to rank the combined data from the lowest to highest values．In that case of the two or more values are the same，the tied values are assigned the average rank of their positions in the combined data set．

TABLE 18．12 Assigned Ranks for the Combined Account Balance Samples

Branch	Account	Balance	Rank
2	6	750	1
2	5	800	2
1	7	805	3
2	2	850	4
2	7	865	5
1	9	875	6
2	1	885	7
2	3	915	8
1	5	925	9
2	10	935	10
1	8	945	11
1	6	950	12.5
2	4	950	12.5
1	2	955	14
1	12	975	15
2	8	1000	16
1	11	1025	17
2	9	1050	18
1	10	1055	19
1	1	1095	20
1	4	1195	21
1	3	1200	22

（d）（Table 18．13）The next step is to sum the ranks for each sample： 169.5 for sample 1 and 83.5 for sample 2 are shown．Thus，we have $W=169.5$ ．When both samples sizes are \qquad ，a normal approximation of the sampling distribution of W can be used．

TABLE 18.13	Combined Ranking of the Data in the Two Samples from Third National Bank				
	Branch 1			Branch 2	
Account	Balance（\＄）	Rank	Account	Balance（\＄）	Rank
1	1095	20	1	885	7
2	955	14	2	850	4
3	1200	22	3	915	8
4	1195	21	4	950	12.5
5	925	9	5	800	2
6	950	12.5	6	750	1
7	805	3	7	865	5
8	945	11	8	1000	16
9	875	6	9	1050	18
10	1055	19	10	935	10
11	1025	17		Sum of Ranks	83.5
12	975	15			
	Sum of Ranks	169.5			

14．Under the assumption that the null hypothesis is true and the populations are identical，the sampling distribution of the test statistic W is：

Mean ： \qquad

Standard deviation ：

Distribution form：Approximately normal provided \qquad ．

15．Since the test statistic W is discrete and the normal distribution is continuous， we will again use the \qquad factor for the normal distribution approximation．

16．Example Third National Bank．
（a）（Figure 18．6）Given the sample sizes \qquad ，equations（18．5） and（18．6）provide the following mean and standard deviation for the sampling distribution：

$$
\text { Mean : } \mu_{W}=(1 / 2)(12)(12+10+1)=138
$$

Standard deviation ：$\sigma_{W}=\sqrt{(1 / 12)(12)(10)(12+10+1)}=15.1658$
FIGURE 18．6 Sampling Distribution of W for the Third National Bank Example

（b）With $W=169.5$ in the \qquad of the sampling distribution，we have the following p－value calculation：

$$
P(W \geq 169.5)=
$$

\qquad
（c）Using the standard normal random variable and $z=2.04$ ，the two－tailed p－ value \qquad ．With p－value ≤ 0.05 ， \qquad and conclude that the two populations of account balances are not identical．The upper tail value for test statistic W indicates that the population of account balances at branch 1 tends to be \qquad ．

17．Some applications of the MWW test make it appropriate to assume that the two populations have \qquad and if the populations differ，it is only by a
\qquad in the location of the distributions．

18．If the two populations have the \qquad ，the hypothesis test may be stated in terms of the difference between the two \qquad ．Any difference between the medians can be interpreted as the shift in location of one population compared to the other．In this case，the three forms of the MWW test about the medians（ $M_{i}, i=1,2$ ）of the two populations are as follows：

Two－Tailed Test	Lower Tail Test	Upper Tail Test
$H_{0}: M_{1}-M_{2}=0$	$H_{0}: M_{1}-M_{2} \geq 0$	$H_{0}: M_{1}-M_{2} \leq 0$
$H_{a}: M_{1}-M_{2} \neq 0$	$H_{a}: M_{1}-M_{2}<0$	$H_{a}: M_{1}-M_{2}>0$

18．4 Kruskal－Wallis Test

1．（Recall Chapter 13，ANOVA）We considered a parametric test for three or more populations when we used \qquad and assumed that the popula－ tions had normal distributions with the same standard deviations．Based on an independent random sample from each population，we used the \qquad to test for differences among the \qquad ．

2．The nonparametric \qquad is based on the analysis of independent random samples from each of \qquad populations．This procedure can be used with either \qquad data or \qquad data and does not require the assumption that the populations have normal distributions：
H_{0} ：All populations are \qquad
H_{a} ：Not all populations are identical
3．If H_{0} is rejected，we will conclude that there is a difference among the popula－ tions with one or more populations tending to provide \qquad values compared to the other populations．

4．Example Performance Evaluation Ratings for 20 Williams Employees
（a）（Table 18．14）Williams Manufacturing Company hires employees for its man－ agement staff from three different colleges．Recently，the company＇s personnel director began reviewing the annual performance reports for the management staff in an attempt to determine whether there are differences in the perfor－ mance ratings among the managers who graduated from the three colleges． The performance rating shown for each manager is recorded on a scale from 0 to 100 ，with 100 being the highest possible rating．

TABLE 18．14 Performance Evaluation Ratings for 20 Williams Employees

College A	College B	College C
25	60	50
70	20	70
60	30	60
85	15	80
95	40	90
90	35	70
80		75

（b）Suppose we want to test whether the three populations of managers are identi－ cal in terms of \qquad ．We will use a 0.05 level of significance for the test．
（c）（Table 18．15）The first step in the Kruskal－Wallis procedure is to \qquad
\qquad from lowest to highest values．Note that we assigned the average ranks to tied performance ratings of $60,70,80$ ，and 90 ．

TABLE 18．15 Combined Rankings for the Three Samples

College A	Rank	College B	Rank	College C	Rank
25	3	60	9	50	7
70	12	20	2	70	12
60	9	30	4	60	9
85	17	15	1	80	15.5
95	20	40	6	90	18.5
90	18.5	35	$\frac{5}{75}$	70	12
80	$\underline{15.5}$	Sum of Ranks	$\mathbf{2 7}$	75	$\frac{14}{88}$
Sum of Ranks	95			Sum of Ranks	88

5．The Kruskal－Wallis test statistic：

where
－$k=$ the number of populations
－$n_{i}=$ the number of observations in sample i
－$n_{T}=\sum_{i=1}^{k} n_{i}=$ the total number of observations in all samples
－$R_{i}=$ the sum of the ranks for sample i
（a）Kruskal and Wallis were able to show that，under the null hypothesis assump－ tion of identical populations，the sampling distribution of H can be approxi－ mated by a \qquad distribution with \qquad degrees of freedom．
（b）This approximation is generally acceptable if the \qquad for each of the k populations are all \qquad ．
（c）The null hypothesis of identical populations will be rejected if the test statistic H is large．As a result，the Kruskal－Wallis test is \qquad expressed as an
\qquad test．

6．Example Performance Evaluation Ratings for 20 Williams Employees
（a）The value of the Kruskal－Wallis test statistic：

$$
H=\frac{12}{20(21)}\left[\frac{(95)^{2}}{7}+\frac{(27)^{2}}{6}+\frac{(88)^{2}}{7}\right]-3(20+1)=8.92
$$

（b）We find \qquad has an area of 0.025 in the upper tail of the chi－ square distribution and has an area of 0.01 in the upper tail of the chi－square distribution．
（c）With $H=8.92$ between 7.378 and 9.21 ，we can conclude that the p－value is between 0.025 and 0.01 ．Because p－value $\leq \alpha=0.05$ ，we reject H_{0} and conclude that the three populations are not all the same．The three populations of performance ratings are not identical and differ significantly depending upon the college．
（d）Because the sum of the ranks is relatively low for the sample of managers who graduated from \qquad ，it would be reasonable for the company to either reduce its recruiting from college B ，or at least evaluate the college B graduates more thoroughly before making a hiring decision．

7．In some applications of the Kruskal－Wallis test，it may be appropriate to make the assumption that the populations have \qquad and if they differ，it is only by a \qquad for one or more of the populations．

8．If the k populations are assumed to have the same shape，the hypothesis test can be stated in terms of the \qquad ．In this case，the hypotheses for the Kruskal－Wallis test would be written as follows：

$$
\begin{aligned}
H_{0} & : M_{1}=M_{2}=\cdots=M_{k} \\
H_{a} & : \text { Not all Medians are equal }
\end{aligned}
$$

9．NOTES＋COMMENTS：The example in this section used quantitative data on em－ ployee performance ratings to conduct the Kruskal－Wallis test．This test could also have been used if the data were the \qquad of the 20 employees in terms of performance．In this case，the test would use the ordinal data directly． The step of converting the quantitative data into rank－ordered data would not be necessary．

18．5 Rank Correlation

1．（Recall Chapter 3）The Pearson product moment correlation coefficient is a measure of the \qquad between two variables using quantitative data．

2．The Spearman rank－correlation coefficient has been developed for a correlation mea－ sure of association between two variables when \qquad are available：
where
$n=$ the number of observations in the sample
$x_{i}=$ the rank of observation i with respect to the first variable
$y_{i}=$ the rank of observation i with respect to the second variable

3．The Spearman rank－correlation coefficient ranges from \qquad and its interpretation is similar to the Pearson product moment correlation coefficient for quantitative data．

4．A rank－correlation coefficient near \qquad indicates a strong \qquad association between the ranks for the two variables．

5．Example Sales Potential and Actual Two－Year Sales Data
（a）A company wants to determine whether individuals who had a greater potential at the time of employment turn out to have higher sales records．To investigate， the personnel director reviewed the original job interview reports，academic records，and letters of recommendation for 10 current members of the sales force．
（b）After the review，the director ranked the 10 individuals in terms of their po－ tential for success at the time of employment and assigned the individual who had the most potential the rank of 1 ．
（c）（Table 18．16）Data were then collected on the actual sales for each individual during their first two years of employment．On the basis of the actual sales records，a second ranking of the 10 individuals based on sales performance was obtained．

TABLE 18．16 Sales Potential and Actual Two－Year Sales Data

Salesperson	Ranking of Potential	Two－Year Sales（units）	Ranking According to Two－Year Sales
A	2	400	1
B	4	360	3
C	7	300	5
D	1	295	6
E	6	280	7
F	3	350	4
G	10	200	10
H	9	260	8
I	8	220	9
J	5	385	2

（d）（Table 18．17）Computation of the Spearman Rank－Correlation Coefficient for Sales Potential and Sales Performance

（e）$r_{s}=0.733$ indicates a \qquad between the ranks based on potential and the ranks based on sales performance．Individuals who ranked higher in potential at the time of employment tended to rank higher in two－year sales performance．

6．Use the sample rank correlation r_{s} to make an inference about the population rank correlation coefficient ρ_{s} ：

$$
H_{0}:
$$

\qquad H_{a} ： \qquad
7．（S ampling distribution of r_{s} ）Under the assumption that the null hypothesis is true and the population rank－correlation coefficient is 0 ，the following sampling distribution of r_{s} can be used to conduct the test．

Mean ： \qquad
Standard deviation ：
Distribution form：Approximately normal provided \qquad
8．Example Sales Potential and Actual Two－Year Sales Data
（a）The sample rank－correlation coefficient for sales potential and sales perfor－ mance is \qquad ．Using equation（18．9），we have \qquad ，and using equation（18．10），we have
（b）With the sampling distribution of r_{s} approximated by a normal distribution， the standard normal random variable z becomes the test statistic with
（c）Using the standard normal probability table and $z=2.20$ ，we find the two－ tailed p－value \qquad ．With a 0.05 level of significance， p－value $\leq \alpha$ ．Thus，we the null hypothesis that the population rank－correlation coefficient is zero．
（d）The test result shows that there is a \qquad rank correlation between potential at the time of employment and actual sales performance．

© EXERCISES

$18.1: 1,3,6,9$
18.2 ： $12,15,17$
18.3 ：18， 21
$18.4: 26,29$
$18.5: 32,35$
SUP ：39，41， 45
＂對一個不滿意的人生你只有兩種選擇，強迫自己接受，或說服自己改變。＂
＂You can only do one of two things to an unsatisfying life：force yourself to accept it，or convince yourself to change．＂
—媽的多重宇宙（Everything Everywhere All at Once，2022）

國立政治大學 110 學年度第 2 學期 小考（1）考試命題紙 試科目：統計學（一）開課班別：統計學整合開課 命題						
考試日期： 3 月 17 日（四）16：10－17：30	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋借註。 2．為環保節能減碳，試題一律採隻面印刷，如有特殊印製需求，請註記：
本試題共 3 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電	
備註：注意事項要看！！（範圍：§10～§11）	O	\times	\times	\times	\times	

注意事項：（1）答案卷請寫上姓名及學號。（2）請按題號順序書寫。（3）每一題號需置於答案卷最左邊。（4）中英文作答皆可。（5）可用鉛筆。（6）需要計算過程。（7）同時交回答案卷，題目卷，計算紙。（8）總分共 120 分。

1．(10%) 試舉生活上一個應用「Hypothesis Testing for the Difference Between Two Population Means」的情境範例，同時說明，資料中的變數需滿足什麼條件才能合適地應用此統計方法。

2．(20%) Consider the following data for two independent random samples taken from two normal pop－ ulations．

Sample 1：	$10,7,13, ~ 7, ~ 9, ~$
Sample 2：	$8,7,8,4,6,9$

（a）Compute the two sample means．
（b）Compute the two sample standard deviations．
（c）What is the point estimate of the difference between the two population means？
（d）What is the 90% confidence interval estimate of the difference between the two population means？

3．(20%) Gender Differences in Raise or Promotion Expectations．The Adecco Workplace In－ sights Survey sampled men and women workers and asked if they expected to get a raise or promotion this year．Suppose the survey sampled 200 men and 200 women．If 104 of the men replied Yes and 74 of the women replied Yes，are the results statistically significant in that you can conclude a greater proportion of men are expecting to get a raise or a promotion this year？
（a）State the hypothesis test in terms of the population proportion of men and the population pro－ portion of women．
（b）What is the sample proportion for men？For women？
（c）Use a .01 level of significance．What is the p－value and what is your conclusion？

4．(10%) A sample of 16 items provides a sample standard deviation of 9.5 ．Test the following hypotheses using $\alpha=0.05$ ．What is your conclusion？Use both the p－value approach and the critical value approach．

$$
H_{0}: \sigma^{2} \geq 50, \quad H_{a}: \sigma^{2}<50
$$

國立政治大學 110 學年度第 2 學期 小考（1）考試命題紙						
考試日期： 3 月 17 日（ 四）16：10－17：30	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋備註。 2．為環保節能減碳，試題一律採雙面印 刷，如有特殊印製需求，請註記：
本試題共 3 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電	
備註：注意事項要看！！（範圍：§10～§11）	O	\times	\times	\times	\times	

5．(20%) Price Comparison of Smoothie Blenders．A personal fitness company produces both a deluxe and a standard model of a smoothie blender for home use．Selling prices obtained from a sample of retail outlets follow．

	Model Price（\＄）						
Retail Outlet	1	2	3	4	5	6	7
Standard	39	39	45	38	40	39	35
Deluxe	27	28	35	30	30	34	29

（a）The manufacturer＇s suggested retail prices for the two models show a $\$ 10$ price differential．Use a 0.05 level of significance and test that the mean difference between the prices of the two models is $\$ 10$ ．
（b）What is the 95% confidence interval for the difference between the mean prices of the two models？

6．（ 20% ）Smartphone Battery Life．Battery life is an important issue for many smartphone owners． Public health studies have examined＂low－battery anxiety＂and acute anxiety called nomophobia that results when a smartphone user＇s phone battery charge runs low and then dies．Battery life between charges for the Samsung Galaxy S9 averages 31 hours when the primary use is talk time and 10 hours when the primary use is Internet applications．Because the mean hours for talk time usage is greater than the mean hours for Internet usage，the question was raised as to whether the variance in hours of usage is also greater when the primary use is talk time．Sample data showing battery life between charges for the two applications follows．

Primary Use：Talking： $35.8,22.2,24.0,32.6,18.5,42.5,28.0,23.8,30.0$ ， $22.8,20.3,35.5$
Primary Use：Internet： $14.0,12.5,16.4,11.9,9.9,3.1,5.4,11.0,15.2,4.0,4.7$
（a）Formulate hypotheses about the two population variances that can be used to determine if the population variance in battery life is greater for the talk time application．
（b）What are the standard deviations of battery life for the two samples？
（c）Conduct the hypothesis test and compute the p－value．Using a 0.05 level of significance，what is your conclusion？

國立政治大學 110 學年度第 2 學期 小考（1） 考試命題紙 考試科目：統計學 $(一)$ 開課班別：統計學整合開課 命題							
考試日期： 3 月 17 日（四）16：10－17：30	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋備註 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記：	
本試題共 3 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電		
備註：注意事項要看！！（範圍：§10～§11）	O	\times	\times	\times	\times		

機率表

Upper tail probability．

i	p	z	t_{6}	t_{9}	t_{11}	χ_{15}^{2}	χ_{16}^{2}	$F_{11,10}$	$F_{10,11}$
1	0.200	0.8416	0.9057	0.8834	0.8755	19.3107	20.4651	1.7235	1.6940
2	0.100	1.2816	1.4398	1.3830	1.3634	22.3071	23.5418	2.3018	2.2482
3	0.050	1.6449	1.9432	1.8331	1.7959	24.9958	26.2962	2.9430	2.8536
4	0.025	1.9600	2.4469	2.2622	2.2010	27.4884	28.8454	3.6649	3.5257
5	0.010	2.3263	3.1427	2.8214	2.7181	30.5779	31.9999	4.7715	4.5393
6	0.005	2.5758	3.7074	3.2498	3.1058	32.8013	34.2672	5.7462	5.4183

公式
－$d f=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$

第 $3 / 3$ 頁

注意：1，考試求公平及公正，請同學務必自律，維護學校與學生之榮譽。
2 ，考試時不得有交談，窺視，夾帶，抄襲，傳遞，代考或其它作弊等舞弊行為，考畢務必交卷，不得攜卷出場，違者依考場規則議處。

國立政治大學110學年度第2 學期 線上小考（2）考試命題紙								
考試日期：5月12日（四）16：10－17：30	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋備註。 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記		
本試題共 2 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電			
備註：注意事項要看！！（範圍：§14）	O	\times	\times	\times	\times			

注意事項：（1）答案卷請寫上姓名及學號。（2）請按題號順序書寫。（3）每一題號需置於答案卷最左邊。（4）中英文作答皆可。（5）可用鉛筆。（6）需要計算過程。（7）上傳答案卷：http：／／www．hmwu．idv．tw，點選【作業考試上傳區】，login：stat110，password：xxxx。（8）答題卷拍照請務必清晰，需滿版平整，周遭不可有雜物入鏡。答題卷檔名：學號－姓名－頁碼．jpg 或學號－姓名－頁碼．pdf。（9）總分共 120 分。

1．(20%) 名詞解釋（不能只列出公式，需解釋其意思）：（a）Coefficient of determination（判定係數）， （b）Residuals（殘差），（c）Normal probability plot（常態機率圖）（Hint：用途為何？）。（d）Leverage of observation i and the high leverage points（第 i 個觀察值的槓桿及高度梖桿點）。

2．(30%) The simple linear regression（SLR）．
（a）(5%) What is a SLR model？（Explain all the symbols and characters in the model．）
（b）(10%) In the SLR model，what assumptions are made about the error term？
（c）(15%) Derive the estimated regression coefficients $\left(b_{0}, b_{1}\right)$ using least square method．
3．(10%) When applying a SLR analysis to a given dataset，$\left\{y_{i}, x_{i}\right\}_{i=1}^{n}$ ，let \hat{y}^{*} be the point estimate of $E\left(y^{*}\right)$ ．The formula for estimating the variance of \hat{y}^{*} ，denoted by $s_{\hat{y}^{*}}^{2}$ ，is

$$
\begin{equation*}
s_{\hat{y}^{*}}^{2}=s^{2}\left[\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] \tag{14.22}
\end{equation*}
$$

Also，let \hat{y}^{*} be the predictor of an individual value of y^{*} when $x=x^{*}$ ．The formula for estimating the variance corresponding to the prediction of the value of y when $x=x^{*}$ ，denoted $s_{p r e d}^{2}$ ，is

$$
\begin{equation*}
s_{\text {pred }}^{2}=s^{2}\left[1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right] \tag{14.25}
\end{equation*}
$$

Why does Equation（14．25）have an extra term s^{2} when compared to Equation（14．22）？

4．(20%) How do you validate the assumptions of a SLR model？（請依課本第 14 章內容回答。）

5．（20\％）When you apply SLR analysis to a given data set，how can you detect outliers and influential observations？（請依課本第14章內容回答。）

國立政治大學110學年度第 2 學期 線上小考（2）考試命題紙								
考試日期： 5 月 12 日（四）16：10－17：30						1．需加發計算紙或答案紙請在試題内封袋備註 2．為環保節能減碳•試題一律採雙面印 刷，如有特殊印製需求，請註記		
本試題共2頁，印刷份數：56 份	計算相	課本	策記	字典	手機平板䈴			
備註 ：注意事項要看！！（範圍：§14）	O	\times	\times	\times	\times			

6．（20\％）Estimating Setup Time．Sherry is a production manager for a small manufacturing shop and is interested in developing a predictive model to estimate the time to produce an order of a given size－that is，the total time to produce a certain quantity of the product．She has collected data on the total time to produce 30 different orders of various quantities in the file Setup．

```
Quantity: 105, 125, 135, ...
Total Time: 173, 188, 222, ...
```

The scatter diagram with quantity as the independent variable and the report of a SLR model analysis for this data are given below．
（a）（5\％）Develop the estimated regression equation．Interpret the intercept and slope．
（b）（5\％）Test for a significant relationship（ t－test，F－test）．Use $\alpha=0.05$ ．（The interpretation is required．）
（c） 5% Interpret the coefficient of determination．
（d）（5\％）Did the estimated regression equation provide a good fit？

第 $2 / 2$ 頁

注意：1，考試求公平及公正，請同學務必自律，維護學校與學生之榮譽。
2，考試時不得有交談，窺視，夾帶，抄襲，傳遞，代考或其它作弊等舞弊行為，考畢務必交卷，不得攜卷出場，違者依考場規則議處。

國立政治大學110學年度第2 學期 線上小考（3）考試命題紙								
考試日期： 6 月 02 日（四）16：10－17：30	＊准帶項目打「O」」，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋備註。 2．為環保節能減碳，試題一律採隻面印刷，如有特殊印製需求，請註記：		
本試題共4頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電			
備註：注意事項要看！！（範圍：§15）	O	\times	\times	\times	\times			

注意事項：（1）答案卷請寫上科目，系級，學號及姓名。（2）請按題號順序書寫。（3）每一題號需置於答案卷最左邊。（4）中英文作答皆可。（5）建議用深色原子筆。（6）需要計算過程。（7）上傳答案卷： http：／／www．hmwu．idv．tw，點選【作業考試上傳區】，login：stat110，password：xxxx。（8）答題卷拍照請務必清晰，需滿版平整，周遭不可有雜物入鏡。答題卷檔名：學號－姓名－exam3．pdf。（9）總分共 120 分。 （10）請複寫下列宣誓詞至答案卷上。

本人姓名 重視榮譽，以認真負責的態度，參與於本次線上遠距考試，恪遵各項考試規則，無任何不法或舞弊情事，如違誓言，願受校方最嚴厲之處罰，謹誓。

1．(15%) 名詞解釋（不能只列出公式，需解釋其意思）：（a）Logistic regression（邏輯斯迴歸）。（b）Odds （勝算）$)(\mathrm{c})$ Odds ratio（勝算比）。（不能僅寫「勝算比是兩個勝算的比值」）。

2．（ 15% ）Suppose the equation for the multiple linear regression（MLR）model is expressed by

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}+\epsilon
$$

（a）（5\％）What is the estimated multiple regression equation？（請依課本所使用的符號作答）
（b）(10%) How do you interpret each regression coefficient？（Except for the intercept．）
3．(20%) Apply a MLR to a given dataset，$\left\{y_{i}, x_{i 1}, x_{i 2}, \cdots, x_{i p}\right\}_{i=1}^{n}$ ，
（a）(5%) What is the definition of the multiple coefficient of determination（多重判定係數）？（記做 R^{2} ）
（b）(5%) How to interpret R^{2} ？
（c）(10%) The formula for the adjusted R^{2} is $R_{a}^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-p-1} \circ$ What is the purpose of adjusting for R^{2} ？

4．（15\％）Multicollinearity（共線性）
（a） $\mathbf{(5 \%)}$ What does the multicollinearity mean in the multiple regression analysis？
（b）(10%) What are the effects when the multicollinearity is severe？（請依課本內容作答）

國立政治大學 110 學年度第 2 學期 線上小考（3）考試命題紙統計學（一）開課班別：統計學整合開課 命題教授							
考試日期： 6 月 02 日（四）16：10－17：30	＊准帶項目打 「O」」，否則打「×」					1．需加發計算紙或答案紙請在試题内封袋備註 2．為環保節能減碳．試題一律採隻面印 刷，如有特殊印雯需求•請註記	
本試題共4頁，印刷份數：56 份	計算機	晹本	革記	字典	手機平板策		
備註：注意事項要看！！（範圍：§15）	O	\times	\times	\times	\times		

6．(15%) Data for two variables，x and y ，follow．

i	1	2	3	4	5	mean	sum square
x_{i}	22	24	26	28	40	$\bar{x}=28$	$\sum x_{i}^{2}=4120$
y_{i}	12	21	31	35	70	$\bar{y}=33.8$	$\sum y_{i}^{2}=7671$

（a）(0%) Develop the estimated regression equation for these data．
（b）(5%) Compute the studentized deleted residual for the 4th observation $(i=4)$ ．At the 0.05 level of significance，can this observation be classified as an outlier？Explain．
（c） 5% ）Compute the leverage value for the 4 th observation $(i=4)$ ．Do there appear to be an influential observation？Explain．
（d）(5%) Compute Cook＇s distance measure for the 4 th observation $(i=4)$ ．Is this observation influential？Explain．
（公式見最後一頁）

```
> x <- c(22, 24, 26, 28, 40)
>y <-c(12, 21, 31, 35, 70)
> mylm <- lm(y~x)
> summary(mylm)
Call:
lm(formula = y ~ x)
Residuals:
1
Coefficients:
```



```
M
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ', 1
Residual standard error: 2.851 on 3 degrees of freedom
Multiple R-squared: 0.9876, Adjusted R-squared: 0.9834
F-statistic: }238\mathrm{ on 1 and 3 DF, p-value: 0.0005915
> anova(mylm)
Analysis of Variance Table
Response: y
```



```
                M Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3 24.38 8.13
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ', 1
```

國立政治大學110學年度第 2 學期 線上小考（3）考試命題䊼								
考試日期： 6 月 02 日（四）16：10－17：3	＊准带項目打 「O」」，否則打「×」					1．需加發計算細或答亲紙請有試題内封袋備註 2．為環保節能減碳•試題一律採雙面印 刷，如有特殊印雯需求，請註記：		
本試題共 4 頁，印刷份數：56 份	計算嘰	課本	策記	字典	手機平板策䉓			
備註 ：注意事項要看！！（範圍：§15）	O	\times	\times	\times	\times			

6．（40\％）College Retention．Over the past few years the percentage of students who leave Lakeland College at the end of the first year has increased．Last year Lakeland started a voluntary one－week orientation program to help first－year students adjust to campus life．If Lakeland is able to show that the orientation program has a positive effect on retention，they will consider making the program a requirement for all first－year students．Lakeland＇s administration also suspects that students with lower GPAs have a higher probability of leaving Lakeland at the end of the first year．In order to investigate the relation of these variables to retention，Lakeland selected a random sample of 100 students from last year＇s entering class．The data are contained in the data set named Lakeland；a portion of the data follows．

Student：	1	2	3	\cdots	98	99	100
GAP：	3.78	2.38	1.30	\cdots	2.57	1.70	3.85
Program：	1	0	0	\cdots	1	1	1
Return：	1	1	0	\cdots	1	1	1

The dependent variable was coded as $y=1$ if the student returned to Lakeland for the sophomore year and $y=0$ if not．The two independent variables are：

$$
\begin{aligned}
& x_{1}=\text { GPA at the end of the first semester } \\
& x_{2}= \begin{cases}0 & \text { if the student did not attend the orientation program } \\
1 & \text { if the student attended the orientation program }\end{cases}
\end{aligned}
$$

（a）(5%) Write the logistic regression equation relating x_{1} and x_{2} to y ．
（b）(5%) What is the interpretation of $E(y)$ when $x_{2}=0$ ？
（c）(5%) Use both independent variables and statistical software to compute the estimated logit．
（d）(5%) Conduct a test for overall significance using $\alpha=0.05$ ．
（e）(5%) Use $\alpha=0.05$ to determine whether each of the independent variables is significant．
（f）(5%) Use the estimated logit computed in part（c）to estimate the probability that students with a 2.5 grade point average who did not attend the orientation program will return to Lakeland for their sophomore year．What is the estimated probability for students with a 2.5 grade point average who attended the orientation program？
（g）(5%) What is the estimated odds ratio for the orientation program？Interpret it．
（h）（5\％）Would you recommend making the orientation program a required activity？Why or why not？

2，考試時不得有交談，窺視，夾帶，抄襲，傳遞，代考或其它作弊等舞弊行為，考畢務必交卷，不得攜卷出
glm(formula $=$ Return \sim GPA + Program, family $=$ binomial, data $=$ Lakeland)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-1.9610	-0.4828	0.2848	0.5980	1.8154

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

| (Intercept) | -6.8926 | 1.7472 | -3.945 | $7.98 \mathrm{e}-05 * * *$ |
| :--- | ---: | ---: | ---: | ---: | :--- |
| GPA | 2.5388 | 0.6729 | 3.773 | $0.000161 * *$ |
| Program1 | 1.5608 | 0.5631 | 2.772 | 0.005579 ** |

Signif. codes: $0{ }^{\prime} * * *^{\prime} 0.001{ }^{\prime} * *^{\prime} 0.01{ }^{\prime} *^{\prime} 0.05$ '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 128.207 on 99 degrees of freedom
Residual deviance: 80.338 on 97 degrees of freedom
AIC: 86.338

Number of Fisher Scoring iterations: 5
$>$
> anova(model, test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: Return
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev $\operatorname{Pr}(>C h i)$

NULL			99	128.207	
GPA	1	40.008	98	88.199	$2.53 e-10$

Signif. codes: $0{ }^{\prime} * * *^{\prime} 0.001{ }^{\prime} * *^{\prime} 0.01{ }^{\prime} *^{\prime} 0.05$ '.' 0.1 ' 1

公式:

1. $h_{i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
2. $\frac{y_{i}-\hat{y}_{i}}{s_{y_{i}-\hat{y}_{i}}}, s_{y_{i}-\hat{y}_{i}}=s \sqrt{1-h_{i}}$
3. $D_{i}=\frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{(p+1) s^{2}}\left[\frac{h_{i}}{\left(1-h_{i}\right)^{2}}\right]$

國立政治大學 110 學年度第 2 學期 期中考 考試命題紙統計學（一）開課班別。 统計學整合開課 合題						
考試日期： 4 月 12 日（二）13：10－14：40	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋借註 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記：
本試題共 3 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電	
備註：注意事項要看！！（範圍：$\S 10 \sim \S 13)$	O	\times	\times	\times	\times	

注意事項：（1）答案卷請寫上姓名及學號。（2）請按題號順序書寫。（3）每一題號需置於答案卷最左邊。（4）中英文作答皆可。（5）可用鉛筆。（6）需要計算過程。（7）同時交回答案卷，題目卷，計算紙。（8）總分共 120 分。（9）下列假設檢定問題，一律需寫出虛無假設，檢定統計量，決策法則及結論。（10）小數請計算至小數點以下 4 位。

1．(25%) 統計名詞解釋：
（a）配對樣本（Matched samples）
（b）卡方適合度檢定（Chi－square goodness of fit test）
（c）變異數分析表格（ANOVA table）
（d）均方誤差（Mean square error，Mean square due to error）
（e）多重比較（multiple comparison）（ps．於變異數分析中，拒絕虛無假設後所要進行的程序）
2．（ 15% ）採用變異數分析（ANOVA）於多個母體平均數的比較所要求的三個前置假設（assumptions）為何？

3．(10%) Let $X_{1}, X_{2}, \cdots, X_{n}$ are observations of a random sample of size n from the normal distribution $N\left(\mu, \sigma^{2}\right) . \bar{X}$ is the sample mean and S^{2} is the sample variance．Derive the $(1-\alpha) \%$ confidence interval for population variance．（不能只有寫信賴區間的公式）

4．(20%) Weekly Demand at Whole Foods Market．The manager at a Whole Foods Market is responsible for managing store inventory．The mathematical models that she uses to determine how much inventory to stock rely on product demand being normally distributed．In particular，the weekly demand of sriracha chili kale chips at a Whole Foods Market store is believed to be normally distributed．Use a goodness of fit test and the following data to test this assumption．Use $\alpha=0.10$

$$
\begin{array}{lllllllllllllll}
18 & 20 & 22 & 27 & 22 & 25 & 22 & 27 & 25 & 24 & 26 & 23 & 20 & 24 & 26 \\
27 & 25 & 19 & 21 & 25 & 26 & 25 & 31 & 29 & 25 & 25 & 28 & 26 & 28 & 24
\end{array}
$$

國立政治大學 110 學年度第 2 學期 期中考 考試命題紙

統計學（二）	開課班別：統計學整合開課					命題教授：吳漢銘
考試日期： 4 月 12 日（二）13：10－14：40	＊准帶項目打 「 O 」 ，否則打 「×」					1．需加墢計算紙或答案紙請在試題内封袋備註。 2．為環保節能減碳．試題一律採隻面印 刷，如有特殊印製需求，請註記：
本試題共 3 頁，印刷份數： 56 份	計算機	課本	策記	字典	手機平板策電	
備註：注意事項要看！！（範圍：§10～§13）	O	\times	\times	\times	\times	

5．（20\％）Company Reputation and Management Quality Survey．The Wall Street Journal An－ nual Corporate Perceptions Study surveyed readers and asked how they rated the quality of manage－ ment and the reputation of the company for more than 250 world－wide corporations．Both the quality of management and the reputation of the company were rated on a categorical scale of excellent，good， and fair categorical．Assume the sample data for 200 respondents below applies to this study．

Reputation of Company	Quality of Management	Number
Excellent	Excellent	40
Excellent	Good	35
Excellent	Fair	25
Good	Excellent	25
Good	Good	35
Good	Fair	10
Fair	Excellent	5
Fair	Good	10
Fair	Fair	15

（a）Use a 0.05 level of significance and test for independence of the quality of management and the reputation of the company．What is the p－value and what is your conclusion？
（b）If there is a dependence or association between the two ratings，discuss and use probabilities to justify your answer．

6．(30%) The following data are from a completely randomized design．$(\alpha=0.05)$ ．

Treatment	Values
1	$63,47,54,40$
2	$82,72,88,66,77$
3	$69,58,62$

（a）Use analysis of variance to test for a significant difference among the means of the three treat－ ments．（需列出虛無假設及完整 ANOVA Table）
（b）Use Fisher＇s LSD procedure to determine which means are different．

國立政治大學 110 學年度第 2 學期 期中考 考試命題紙						
考試日期： 4 月 12 日（二）13：10－14：40	＊准帶項目打「O」」，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋備註。 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記：
本試題共 3 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電	
	O	\times	\times	\times	\times	

機率表

Upper tail probability．

i	p	z	t_{6}	t_{9}	t_{11}	χ_{4}^{2}	χ_{5}^{2}	$F_{2,9}$	$F_{3,9}$
1	0.200	0.8416	0.9057	0.8834	0.8755	5.9886	7.2893	1.9349	1.9007
2	0.100	1.2816	1.4398	1.3830	1.3634	7.7794	9.2364	3.0065	2.8129
3	0.050	1.6449	1.9432	1.8331	1.7959	9.4877	11.0705	4.2565	3.8625
4	0.025	1.9600	2.4469	2.2622	2.2010	11.1433	12.8325	5.7147	5.0781
5	0.010	2.3263	3.1427	2.8214	2.7181	13.2767	15.0863	8.0215	6.9919
6	0.005	2.5758	3.7074	3.2498	3.1058	14.8603	16.7496	10.1067	8.7171

Standard Normal Distribution

Percentage	z
10%	-1.28
20%	-0.84
30%	-0.52
40%	-0.25
50%	0.00
60%	0.25
70%	0.52
80%	0.84
90%	1.28

注意：1，考試求公平及公正，請同學務必自律，維護學校與學生之榮譽。
2，考試時不得有交談，窺視，夾帶，抄襲，傳遞，代考或其它作弊等舞弊行為，考畢務必交卷，不得攜卷出場，違者依考場規則議處。

國立政治大學 110 學年度第 2 學期 期末考 考試命題紙統計學（一）開課班• 㳘計學整合開課 命題						
考試日期：6月14日（二）13：10－14：40	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋備註。 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記：
本試題共 5 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電	
備註：注意事項要看！！（範圍：$\$ 14 \sim \S 18)$	O	\times	\times	\times	\times	

注意事項：（1）答案卷請寫上科目，系級，學號及姓名。（2）請按題號順序書寫。（3）每一題號需置於答案卷最左邊。（4）中英文作答皆可。（5）建議用深色原子筆。（6）需要計算過程。（7）上傳答案卷：http： ／／www．hmwu．idv．tw，點選【作業考試上傳區】，login：stat110 password：xxxx。（8）Adobe Scan APP答題卷拍照請務必清晰，需滿版平整，周遭不可有雜物入鏡。答題卷檔名：學號－姓名－FinalExam．pdf。（9）總分共 120 分。（10）小數請計算至小數點以下 4 位。（11）請複寫下列宣誓詞至答案卷上。

> 本人姓名 重視榮譽, 以認真負責的態度, 參與於本次線上遠距考試, 恪遵各項考試規則, 無任何不法或舞弊情事, 如違誓言, 願受校方最嚴厲之處罰, 謹誓。

1．(20%) 統計名詞解釋：
（a）Studentized deleted residuals（學生化刪除殘差， t 化去點殘差）
（b）Moving averages（移動平均）
（c）Nonparametric methods（無母數方法）
（d）Residual analysis（殘差分析）
2．（ 20% ）若觀察到一公司近 10 年的營運收入（Revenue）之時間序列圖如下：

假設有一位分析師想依此資料建立時間序列預測模型，他考量三個預測模型：（a）（5\％）linear trend regression，（b）（5\％）quadratic trend regression，（c）（ 10% ）exponential trend regression。請你依此資料，幫他寫出上述三個模型的迴歸方程式。（需解釋方程式中所使用符號的意思，例如，t 為時間 （年）$t=1,2, \cdots, 10^{\circ}$ ）

國立政治大學 110 學年度第 2 學期 期末考 考試命題紙
考試科目：統計學（二）
開課班別：統計學整合開課
命題教授：吳漢銘
考試日期：6月14日（二）13：10－14：40

本試題共 5 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆

1．需加發計算紙或答案紙請在試題內封袋備註 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記：

備註：注意事項要看！！（範圍：§14～§18）

\times 准帶項目打「 O\lrcorner 否則打「 $\times\lrcorner$				
計算機	課本	筆記	字典	手機平板筆電
	O	\times	\times	\times
	\times			

3．(25%) 某家公司過去一年的月營收如下：

240350230260280320220310240310240230

（a）（ 5% ）請徒手畫出此資料的時間序列圖。此資料是屬於何種時間序列樣態（pattern）？
（b）（ 6% ）計算 3－month 的移動平均（下表中的 MA3）• exponential smoothing（ $\alpha=0.2$ ）預測模型（下表中的 ESO．2）以及各自的三種預測誤差指標。（計算空格的部份（1）～（3）即可，要有計算過程） （表中的｜P．Error \mid 為 absolute value of percentage error．）
（c）（ 4% ）計算兩方法的 MSE，若依此指標，哪個方法較好？
（d）(10%) 各以兩模型預測次年一月的營收。

t	Revenue	MA3	\mid Error \mid	$(\text { Error })^{2}$	\mid P．Error \mid	ES0．2	\mid Error \mid	$(\text { Error })^{2}$	\mid P．Error \mid
1	240								
2	350					240.00	110.00	12100.00	31.43
3	230	273.33	43.33	1877.78	18.84	262.00	32.00	1024.00	13.91
4	260	280.00	20.00	400.00	7.69	255.60	4.40	19.36	1.69
5	280	256.67	23.33	544.44	8.33	256.48	23.52	553.19	8.40
6	320	(1)	33.33	1111.11	(2)	(3)	58.82	3459.32	18.38
7	220	273.33	53.33	2844.44	24.24	272.95	52.95	2803.41	24.07
8	310	283.33	26.67	711.11	8.60	262.36	47.64	2269.78	15.37
9	240	256.67	16.67	277.78	6.94	271.89	31.89	1016.73	13.29
10	310	286.67	23.33	544.44	7.53	265.51	44.49	1979.45	14.35
11	240	263.33	23.33	544.44	9.72	274.41	34.41	1183.85	14.34
12	230	260.00	30.00	900.00	13.04	267.53	37.53	1408.18	16.32
Total	3230	2720.00	293.33	9755.56	115.36	2889.90	477.64	27817.28	171.54

4．（ 20% ）小明是富二代，爸爸開了兩家球鞋製造工廠（A，B），小明想了解這兩家工廠生產的球鞋產量是否有差異，於是在某些固定時段，從兩家工廠各自隨機收集了以下資料（仟雙為單位）。請你幫他選擇合適的無母數統計方法做檢定（顯著水準 (α) 定為 0.05 ）。（請寫出無母數檢定方法名稱，虛無假設，擇一假設，檢定統計量值，以 normal distribution approximation 算出 p 值，決策法則及結論。所需公式及機率值見最後頁）

no	1	2	3	4	5	6	7
A	68	99	42	31	54	25	49
B	105	35	34	87	73	41	57

國立政治大學 110 學年度第 2 學期 期末考 考試命題紙							
考試日期： 6 月 14 日（二）13：10－14：40	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋借註 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記：	
本試題共 5 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電		
備註：注意事項要看！！（範圍：$\$ 14 \sim$ ¢ 18 ）	O	\times	\times	\times	\times		

5．(25%) Risk of a Stroke．A 10－year study conducted by the American Heart Association provided data on how age，blood pressure，and smoking relate to the risk of strokes．Assume that the following data are from a portion of this study．Risk is interpreted as the probability（times 100）that the patient will have a stroke over the next 10－year period．For the smoking variable，define a dummy variable with 1 indicating a smoker and 0 indicating a nonsmoker．（ R 報表在最後頁）

Risk	Age	Pressure	Smoker	Code of Smoker
12	57	152	No	0
24	67	163	No	0
13	58	155	No	0
		\ldots		
37	59	207	Yes	1

（a）(5%) Develop an estimated regression equation that relates risk of a stroke to the person＇s age， blood pressure，whether the person is a smoker and and an interaction term between smoking status and blood pressure．（要說明所使用符號的意思。）
（b）（5\％）Is smoking a significant factor in the risk of a stroke？Explain．Use $\alpha=0.05$ ．
（c） $\mathbf{5 \%}$ ）What are the MSR and MSE for this analysis？
（d）(5%) What are the values R^{2} and adjusted R^{2} ．How to interpret these two values？
（e）(5%) What is the probability of a stroke over the next 10 years for Art Speen，a 68 －year－old smoker who has blood pressure of 175 ？What action might the physician recommend for this patient？

6．（ 10% ）本課程教科書的第 15.9 節 Logistic Regression（第 777 頁）中，有一段敘述是有關於勝算比 （Odds ratio）與迴歸係數（ β_{i} ）的關係：「For each independent variable in a logistic regression equation it can be shown that Odds ratio $\left.=e^{\beta_{i}}\right\lrcorner$ 。請証明簡單羅吉斯迴歸（ y is binary，X is a single predictor）中，

$$
\text { Odds ratio }=e^{\beta_{1}}
$$

（提示：以 odds of success 的表達法，寫出羅吉斯迴歸方程式，再依 odds ratio 的定義可導出上式）

國立政治大學 110 學年度第 2 學期 期末考 考試命題紙						
考試科目：統計學（二）	開課班別：統計學整合開課					命題教授：吳漢銘
考試日期： 6 月 14 日（二）13：10－14：40		带項目	打「0	，否	「「×」	主。
本試題共5頁，印刷份數：56 份	計算機	課本	筆記	宁典	手機平板筝電	刷，如有特殊印製需求，請註記：
備註 ：注意事項要看！！（範圍：§14～§18）	O	\times	\times	\times	\times	

＞summary（Stroke．lm）

Call：
lm（formula $=$ Risk \sim Age + Pressure + Smoker，data $=$ Stroke）

Residuals：

Min	$1 Q$	Median	$3 Q$	Max
-13.1064	-1.5715	0.4225	3.4855	8.5561

Coefficients：
Estimate Std．Error t value $\operatorname{Pr}(>|t|)$
（Intercept）－91．75950 15．22276－6．028 1．76e－05＊＊＊

Age	1.07674	0.16596	6.488	$7.49 \mathrm{e}-06$
Aressure	0.25181	0.04523	5.568	$4.24 \mathrm{e}-05$
t＊＊				

SmokerYes $8.73987 \quad 3.00082 \quad 2.912 \quad 0.0102$＊
－－－
Signif．codes： 0 ＇＊＊＊＇ 0.001 ソ＊＊＇ 0.01 ソ＊＇ 0.05 ソ．＇ 0.1 ，＇ 1

Residual standard error： 5.757 on 16 degrees of freedom Multiple R－squared： 0.8735 ，Adjusted R－squared： 0.8498 F－statistic： 36.82 on 3 and 16 DF ，p－value： $2.064 \mathrm{e}-07$
＞anova（Stroke．lm）
Analysis of Variance Table

Response：Risk
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
Age $\quad 11771.981771 .9853 .47261 .743 \mathrm{e}-06$＊＊＊
Pressure 11607.661607 .6648 .5138 3．185e－06＊＊＊
Smoker 1281.10281 .108 .48260 .01017 ＊
Residuals 16 530．21 33.14
－－－
Signif．codes： 0 ＇＊＊＊＇ 0.001 ＇ネ＊＇ 0.01 ＇＊＇ 0.05 ＇．＇ 0.1 ＇r 1
＞

國立政治大學 110 學年度第 2 學期 期末考 考試命題紙 考試科目：統計學 $($ 二） 開課班別： 統計學整合開課 命題						
考試日期： 6 月 14 日（二）13：10－14：40	＊准帶項目打「O」 ，否則打「×」					1．需加發計算紙或答案紙請在試題内封袋備註 2．為環保節能減碳，試題一律採雙面印刷，如有特殊印製需求，請註記：
本試題共 5 頁，印刷份數：56 份	計算機	課本	筆記	字典	手機平板筆電	
備註：注意事項要看！！（範圍： $114 \sim$ ¢ 18 ）	O	\times	\times	\times	\times	

機率表

Upper tail probability．

i	p	z	t_{6}	t_{9}	t_{11}	χ_{4}^{2}	χ_{5}^{2}	$F_{2,9}$	$F_{3,9}$
1	0.200	0.8416	0.9057	0.8834	0.8755	5.9886	7.2893	1.9349	1.9007
2	0.100	1.2816	1.4398	1.3830	1.3634	7.7794	9.2364	3.0065	2.8129
3	0.050	1.6449	1.9432	1.8331	1.7959	9.4877	11.0705	4.2565	3.8625
4	0.025	1.9600	2.4469	2.2622	2.2010	11.1433	12.8325	5.7147	5.0781
5	0.010	2.3263	3.1427	2.8214	2.7181	13.2767	15.0863	8.0215	6.9919
6	0.005	2.5758	3.7074	3.2498	3.1058	14.8603	16.7496	10.1067	8.7171

R 機率分佈相關指令： $\mathrm{d}, \mathrm{q}, \mathrm{p}, \mathrm{r}$
－pnorm（ -0.83 ）$=0.2033$ ，pnorm（ -0.77 ）$=0.2206$ ，pnorm（ -0.70 ）$=0.2420, \operatorname{pnorm}(-0.64)=$ 0.2611, pnorm $(-0.57)=0.2843$ ．

公式

－Mean：$\mu=n p=0.5 n$ ，Standard deviation：$\sigma=\sqrt{n p(1-p)}=\sqrt{0.25 n}$
－Mean：$\mu_{T^{+}}=\frac{n(n+1)}{4}$ ，Standard deviation：$\sigma_{T^{+}}=\sqrt{\frac{n(n+1)(2 n+1)}{24}}$ ，Distribution Form：Approximately normal for $n \geq 10$ ．
－Mean：$\mu_{W}=(1 / 2) n_{1}\left(n_{1}+n_{2}+1\right)$ ，Standard deviation：$\sigma_{W}=\sqrt{(1 / 12) n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}$ Distribution form：Approximately normal provided $n_{1} \geq 7$ and $n_{2} \geq 7$ ．
－$h_{i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
－$\frac{y_{i}-\hat{y}_{i}}{s_{y_{i}-\hat{y}_{i}}}, s_{y_{i}-\hat{y}_{i}}=s \sqrt{1-h_{i}}$
－$D_{i}=\frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{(p+1) s^{2}}\left[\frac{h_{i}}{\left(1-h_{i}\right)^{2}}\right]$

注意：1，考試求公平及公正，請同學務必自律，維護學校與學生之榮譽。
2，考試時不得有交談，窺視，夾帶，抄襲，傳遞，代考或其它作弊等舞弊行為，考畢務必交卷，不得攜卷出
場，違者依考場規則議處。
＂不管你再怎麼努力，還是有人會忽略你的付出；就為了自己而奮鬥吧。＂
＂Your efforts will always be neglected no matter how hard you try；so fight for yourself．＂緊急迫降（Emergency Declaration，2022）

[^0]: Question （p485）

