> setwd("D: \\user\\Downloads $\backslash \backslash d a t a ")$
$\nrightarrow>$ GPA = read.table("Grade_Point_Average.csv", header
= T, sep = ",")
> colnames(GPA) = c("Y", "X")
$>$ GPA. $\operatorname{lm}=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X}$, data $=$ GPA $)$
$>$ GPA.lm

Call:

$\operatorname{lm}($ formula $=$
Coefficients:
(Intercept)
2.114050 .03883

The least squares estimates of beta0 is 2.11405 and beta 1 is 0.03883 . The estimated regression function is Y hat $=$ $2.11405+0.03883 \mathrm{X}$.
(b)
$>\operatorname{attach}(\mathrm{GPA})$
$>\operatorname{plot}(\mathrm{X}, \mathrm{Y})$

"red", lwd = 2)

See the picture, the estimated regression function appear to fit the data well.
(c)

3.278863

The point estimate of the mean freshman GPA for students with ACT test score $\mathrm{X}=30$ is 3.278863 .
2.
$+2$
(a)
> summary.aov(GPA.lm)
Df Sum Sq Mean $S q$ F value $\operatorname{Pr}(>F)$
$\begin{array}{llllll}\mathrm{X} & 1 & 3.59 & 3.588 & 9.24 & 0.00292\end{array}$
Residuals 11845.820 .388
Signif. codes: 0 '***’ $0.001^{\text {'**' }} 0.01^{\prime * ’} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$

4.Decision rule: p -value <0.01, then we reject H 0 .
5. Decision:

From (a) the p-value is $0.00292<0.01$. We reject H0.
6. Conclusion: Y and X has linear relationship.
(c)
> summary(GPA.lm)
Call:
$\operatorname{lm}($ formula $=\mathrm{Y} \sim \mathrm{X}$, data $=$ GPA $)$
Residuals:
Min 1Q Median Q Max
-2.74004-0.33827 0.04062 0.440641 .22737
Coefficients:
Estimat-Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $2.114050 .32089 \quad 6.588 \quad 1.3 \mathrm{e}-09$ ***
X $\quad 0.03883 \quad 0.012773 .040 \quad 0.00292$ **

Signif. codes: $0{ }^{\prime * * * ’} 0.001^{\prime * * ’} 0.01^{\prime * ’} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.6231 on 118 degrees of freedom
Multiple R-squared: 0.07262, Adjusted R-squared: 0.06476

F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917
The absolute magnitude of the reduction in the variation of Y when X is introduced into the regression model is 3.588 which is obtained by SSR.
> GPA_X = read.table("Grade_Point_Average_X.csv", sep = ",", header = T)
$>$ colnames(GPA_X) <- c("Y", "X", "X2", "X3")

$$
>
$$

boxplot(GPA_X\$X)
(b)
$>$ GPA_X. $\operatorname{lm}=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X}+\mathrm{X} 2+\mathrm{X} 3$, data $=$ GPA_X $)$
$>$ stripchart(GPA_X.lm\$residuals)

(c)
$>$ b0 $=$ GPA_X.lm\$coefficients[1]
$>$ b1 $=$ GPA_X.lm\$coefficients[2]
$>$ b2 $=$ GPA_X.lm\$coefficients[3]
$>$ b3 $=$ GPA_X.lm\$coefficients[4]
$>y$ hat $=\mathrm{b} 0+\mathrm{b} 1 *$ GPA_X $\$ \mathrm{X}+\mathrm{b} 2 *$ GPA_X $\$ \mathrm{X} 2+$ b3*GPA_X\$X3

plot(GPA_X.lm\$residuals, y_hat)
(d)
> qqnorm(GPA_X.lm\$residuals, xlab = "Expected", ylab
$=$ "Residuals", pch = 16, main = "(d) Normal Probability
Plot")
$>$ qqline(GPA_X.lm\$residuals, col = 'red', lwd = 2)

Normal probability plot

$>$ expected $=$ qqnorm(PPA_X.lm\$residuals, x lab $=$ "Expected",ylab = "Residuals", main = "Normal probability plot")
$>$ cor(expected\$x, expected\$y)
[1] 0.9962909
(e)
(f)
4.
$+30$
(a)
$>$ setwd("D:
user \backslash Downloads $\backslash \backslash$ data")
$>$ concentration $=$
read.table("Solution_concentration.csv", sep = ",", header $=\mathrm{T}$)
> colnames(concentration) = c("Y", "X")
$>$ attach(concentration)

$$
>\operatorname{plot}(\mathrm{X}, \mathrm{Y})
$$

$>$ concentration. $\operatorname{lm}=\operatorname{lm}(\mathrm{Y} \sim \mathrm{X}$, data $=$ concentration $)$
$>$ summary(concentration.lm)
Call: lm (formula
Residuals:
Min 1Q Median 3Q Max
$-0.5333-0.4043-0.13730 .41570 .8487$

Coefficients

Signif. codes: $0^{\prime * * * ’} 0.001^{\prime * *} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.4743 on 13 degrees of freedom
Multiple R-squared: 0.8116, Adjusted R-squared:
0.7971

F-statistic: 55.99 on 1 and 13 DF, p-value: 4.611e-06
$>\operatorname{par}($ mfrow $=c(2,2))$

Residuals vs Leverage

plot(concentration.|m)

From the output, we can see that unequal error variances and nonnormality of the error terms. To remedy these departures from the simple linear regression model, we need a transformation on Y , since the shapes and spreads of the distributions of Y need to be changed.
(b)
library(MASS)
library(ALSM)
$\operatorname{par}(\mathrm{mfrow}=c(1,1))$

	concentratic
6	conce
7	summary（conc
8	par（mfrow＝
9	plot（concent
10	
11	
12	
13	1ibrary（MASS
14	1ibrary（ALSN
15	nan（mfrnu－

lambda SSE

1 －2 68．84280491
2 －1 3.16846767
500.03897303
$3 \quad 12.92465333$
$4 \quad 264.15599383$
From the output，we take $\mathrm{Y}^{\prime}=\log \mathrm{Y}$ ．
（c）
$>$ concentration．log． $\operatorname{lm}=\operatorname{lm}(\log (\mathrm{Y}) \sim \mathrm{X}$ ，data $=$ concentration）
＞summary（concentration．log．lm）
Call：
$\operatorname{lm}($ formula $=\log (\mathrm{Y}) \sim \mathrm{X}$, data $=$ con entration $)$
Residuals：
Min 1Q Median 3Q Max
$-0.19102-0.102280 .015690 .077160 .19699$
Coefficients：
Estimate Std．Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

(Intercept)	1.50792	0.06028	25.01	$2.22 \mathrm{e}-12$	$* * *$
X	-0.44993	0.01049	-42.88	$2.19 \mathrm{e}-15 * * *$	

Signif. codes: $0{ }^{\prime * * * ’} 0.001^{\text {'**' }} 0.01^{\prime *}{ }^{\prime} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 0.115 on 13 degrees of freedom Multiple R-squared: 0.993, Adjusted R-squared: 0.9924

F-statistic: 1838 on 1 and 13 DF, p-value: 2 . $188 \mathrm{e}-15$
The least squares estimates of beta 0 is 1.50792 and beta 1 is -0.44993 .
The estimated regression function new Y hat $=1.50792-0.44993 \mathrm{X}$.
(d)
$>\operatorname{par}($ mfrow $=\mathrm{c}(1,1))$
$>\operatorname{plot}(\mathrm{X}, \log (\mathrm{Y}), \mathrm{xlab}=$ "X", ylab = "Transformed Y")

$$
>
$$

abline(concentration.log.lm)
It was better than before.
(e)
$>$ ei $<$ - concentration.log.lm\$residuals
$>$ yhat $<-$ concentration.log.lm\$fitted.values
$>\operatorname{par}($ mfrow $=c(1,2))$
$>$ plot(ei, yhat, xlab = "Errors", ylab = "Fitted Values")
$>$ stdei $<-$ rstandard(concentration.log.lm)
> qqnorm(stdei, ylab = "Standardized Residuals", xlab =
"Normal Scores", main = "QQ Plot")
$>$ qqline $($ stdei, col $=$ "steelblue", lwd $/ 2$)
The error variances are constant/And errors are approximately normally distributed
(1)

Errors

QQ Plot

$\begin{array}{lll}-1 & 0 & 1\end{array}$
(f)
$\log (\mathrm{Y}$ hat $)=1.50792-0.44993 / \mathrm{X}$.
Then Y hat $=\exp (1.50792-0.44993 * X)$.

