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1 Definition of Matrix in Regression Analysis

In regression analysis, one basic matrix is the vector Y, consisting of the n observations on the

response variable:

Y;
Y,
Y =
nx1
Y,
Note that the transpose Y’ is the row vector:

Another basic matrix in regression analysis is the X matrix, which is defined as follows for simple

linear regression analysis:

1 X,
1 X5
X =
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1 X,

The matrix X consists of a column of 1s and a column containing the n observations on the

predictor variable X. Note that the transpose of X is:

2Xn N
X1 X2 . Xn



2 Regression Examples

A product frequently needed is Y'Y, where Y is the vector of observations on the response

variable: o
Yy
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Note that Y'Y is a 1 x 1 matrix, or a scalar. We thus have a compact way of writing a sum of

squared terms: Y'Y = > Y72

We also will need X’X, which is a 2 x 2 matrix:
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and XY, which is a 2 x 1 matrix:
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3 Expectation of Random Vector or Matrix

Suppose we have n = 3 observations in the observations vector Y:

Y
s |72
Ys

The expected value of Y is a vector, denoted by E{Y}, that is defined as follows:
E{Y1}
E{Y} = | B{Y2}
3x1
E{Y3}



In general, for a random vector Y the expectation is:

E{Y})=[E{Y}}] i=1,..n

nx1

and for a random matrix Y with dimension n x p, the expectation is:

E{Y} = [E{Y;}] i=1,..nj=1,...p

nxp

4 Variance-Covariance Matrix of Random Vector

Consider again the random vector Y consisting of three observations Y7, Y5, Y3. The variances of
the three random variables, 02{Y;}, and the covariances between any two of the random variables,
o{Y;,Y;}, are assembled in the variance — covariance matriz of Y, denoted by o?{Y?}, in the

following form:

oV} o{vi.Ya} ofYi, Y3}
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To generalize, the variance-covariance matrix for an n x 1 random vector Y is:
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5 Some Basic Results

Frequently, we shall encounter a random vector W that is obtained by premultiplying the random

vector Y by a constant matrix A (a matrix whose elements are fixed):
W =AY
Some basic results for this case are:

E{A} = A
E{W} = E{AY}=AE{Y}

o {W} = o*{AY} = Ac*{Y}A’



6 Exercises

*5.4. Flavor deterioration. The results shown below were obtained in a small-scale experiment to
study the relation between °F' of storage temperature (X) and number of weeks before flavor deterioration

of a food product begins to occur (V).

? 1 2 3 4 3

X, 8 4 0 -4 -8
Y, 78 90 102 11.0 11.7

Assume that first-order regression model (2.1) is applicable. Using matrix methods, find (1) Y'Y, (2)

X'X, (3) X'Y.
Sol:
(78]
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11.0
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[ 78]
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= 7.8 +9.0 +10.2% + 11.0% + 11.7% = 503.77
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5.17. Consider the following functions of the random variables Y;, Y5, and Yj:

Wi = "i+Yo+Y;

Wy = =Y,

Wy = Yi—-Y,-Y;

a. State the above in matrix notation.

b. Find the expectation of the random vector W.

c. Find the variance-covariance matrix of W.

Sol:

W, 11 1] |n
a. |["Wyl =11 =1 0] |V,

b. Let A= 1|1 —1 0
1 -1 -1

- E{W} = E{AY} = AE{Y}
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c. o {W} =02{AY} = Ac?{Y}A’
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Method: Least Squares Estimation (LSE)

Q= Z(n — E(Y)))?

Let % = 0 and substituting b to S.

~

= —2X'Y +2(X'X) b=0.

= (X'X) b =XV

Properties of the Matrix Derivatives




