Regression Analysis TA Chapter 1 – Linear Regression with One Predictor Variable Chapter 2 – Inferences in Regression and Correlation Analysis

Po-Wei Chen

Institute of Statistics, National Chengchi University

March 13, 2023

1 Method of Least Squares

Simple Linear Regression Model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \ \epsilon_i \stackrel{ind}{\sim} (0, \sigma^2)$$

The method of least squares considers the deviation of Y_i from its expected value:

$$Y_i - (\beta_0 + \beta_1 X_i)$$

The method of least squares requires that we consider the sum of the n squared deviations. This criterion is denoted by Q:

$$Q = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

According to the method of least squares, the estimators of β_0 and β_1 are those values b_0 and b_1 respectively, that minimize the criterion Q for the given sample observations $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$.

$$b_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}, \qquad b_0 = \bar{Y} - b_1 \bar{X}$$

2 Method of Maximum Likelihood

Normal Error Regression Model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \ \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

$$\hat{\beta}_{1MLE} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}, \qquad \hat{\beta}_{0MLE} = \bar{Y} - \hat{\beta}_{1MLE}\bar{X}, \qquad \hat{\sigma}_{MLE}^2 = \frac{\sum (Y_i - \hat{Y}_i^2)}{n}$$

3 Problems

1.20. Copier maintenance. The Tri-City Office Equipment Corporation sells an imported copier on a franchise basis and performs preventive maintenance and repair service on this copier. The data below have been collected from 45 recent calls on users to perform routine preventive maintenance service; for each call, X is the number of copiers serviced and Y is the total number of minutes spent by the service person. Assume that first -order regression model (1.1) is appropriate.

i:	1	2	3	•••	43	44	45
X_i	2	4	3		2	4	5
Y_i	20	60	46		27	61	77

(a) Obtain the estimated regression function.

- (b) Plot the estimated regression function and the data. How well does the estimated regression function fit the data?
- (c) Interpret b_0 in your estimated regression function. Does be provide any relevant information here? Explain.
- (d) Obtain a point estimate of the mean service time when X = 5 copiers are serviced.
- 2.5. Refer to **Copier maintenance** Problem 1.20.
- (a) Estimate the change in the mean service time when the number of copiers serviced increases by one. Use a 90 percent confidence interval. Interpret your confidence interval.
- (b) Conduct a t test to determine whether or not there is a linear association between X and Y here; control the a risk at .10. State the alternatives, decision rule, and conclusion. What is the P-value of your test?
- (c) Are your results in parts (a) and (b) consistent? Explain.
- (d) The manufacturer has suggested that the mean required time should not increase by more than 14 minutes for each additional copier that is serviced on a service call. Conduct a test to decide whether this standard is being satisfied by Tri-City. Control the risk of a Type I error at .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

4 Exercises

- 1.41. Refer to the regression model $Y_i = \beta_1 X_i + \epsilon_i, i = 1, \dots, n$, in Exercise 1.29.
- (a) Find the least squares estimator of β_1 .
- (b) Assume that the error terms ϵ_i are independent $\mathcal{N}(0, \sigma^2)$ and that σ^2 is known. State the likelihood function for the *n* sample observations on *Y* and obtain the maximum likelihood estimator of β_1 . Is it the same as the least squares estimator?
- (c) Show that the maximum likelihood estimator of β_1 is unbiased.

Unbiasedness

Let $X_1, X_2, ..., X_n$ denote a sample on a random variable X with pdf $f(x; \theta), \ \theta \in \Omega$. Let $T = T(X_1, X_2, ..., X_n)$ be a statistic. We say that T is an unbiased estimator of θ if $E(T) = \theta$.