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Regression Analysis (1)
Kutner's Applied Linear Statistical Models (5/E)

Chapter 1: Linear Regression with One Predictor Variable I

Thursday 09:10-12:00, BEEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University

http://www.hmwu.idv.tw

Overview
1. Regression analysis (ZBEF 72 17) is a that utilizes the
relation between two or more so that a
or variable can be predicted from the other, or others.

2. Examples: general form of a regression model

(a) Y: the sales of a product, X: the amount of advertising expenditures (3Z).

(b) Y: the performance of an employee on a job, X: a battery of aptitude tests
(BENMEEAE RIS, M@ RlER).

(¢) Y: the size of the vocabulary of a child, Xi: age of the child, X,: amount of

education of the parents.
(d) Y: the length of hospital stay of a surgical patient, X;: the time in the hospital,

X5 the severity of the operation.

3. In this chapter, we consider the basic ideas of regression analysis and discuss the

of regression models containing a single predictor

variable.
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1.1 Relations between Variables

Functional Relation between Two Variables

1. A relation between two variables is expressed by a

formula. If X denotes the variable and Y the

variable, a functional relation is of the form:

2. Example: Y: dollar sales of a product sold at a fixed price, X: the number of units

sold. If the selling price is $2 per unit, the relation is expressed by the equation:

FIGURE 1.1 Y
Example of
Functional 300 -
Relation.
3z
S 200
B
°
[=)
100 y=2X
|

1 I
0 50 100 50 X
Units Sold

Statistical Relation between Two Variables

1. In general, the observations for a statistical relation do not the

curve of relationship.
2. Example 1: Performance evaluations

(a) Performance evaluations for 10 employees were obtained at midyear (X) and
at year-end (V).

(b) Figure 1.2a: the the midyear evaluation, the tends to
be the year-end evaluation.

(¢) Figure 1.2b: a that describes the statistical relation

between midyear and year-end evaluations.
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(d) Note: that most of the points do not fall directly on the line of statisti-

cal relationship. This around the line represents

in year-end evaluations that is not associated with midyear per-

formance evaluation and that is usually considered to be of a

FIGURE 1.2 Statistical Relation between Midyear Performance Evaluation and Year-End Evaluation.
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3. Example 2:

(a) The data on age and level of a steroid (£2E#Z) in plasma (M2R) for 27 healthy
females between 8 and 25 years old. (Figure 1.3)

(b) The data strongly suggest that the statistical relationship is

(not linear).

(c) As age , steroid level up to a point and then

begins to

FIGURE 1.3 Curvilinear Statistical Relation between Age and Steroid Level in Healthy Females Aged 8 to 25.
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1.2 Regression Models and Their Uses

Historical Origins

1. Regression analysis was first developed by in the latter part
of the
2. Galton had studied the relation between and

noted that the heights of children of both tall and short parents appeared to
([al1€) or ([El%%) to the

3. He considered this tendency to be a regression to

4. Galton developed a mathematical description of this , the

precursor of today’s regression models.

5. The term regression persists to this day to describe

@ THERRES. MR - KRkovE BRSENABRIES: \

https://medium.com/marketingdatascience/d5f8e5e73163.

@ 9BEEER (regression toward the mean) IRZR: & —E% ARG MR D 38 4K
AIR[IEBFMRFI91E (regression toward mediocrity) ©

© A7 SEBBNRE  HFL4NTHSE SERUMPRLEBNTHSS I
REES ; B4 - SELRENRE  HFLNTHEE - EER AKX
\_ TH5E  FEEEEEZ- /

Basic Concepts

1. A regression model is:

(a) A tendency of the variable Y to vary with the
variable X in a fashion.
(b) A scattering of points around the of statistical relationship.

2. Assumptions for a regression model:

(a) There is a (B&ZE M) of Y for each level of X.
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(b) The of these probability distributions vary in some systematic

fashion with A )
3. Example: Performance evaluation (Figure 1.2)

(a) The year-end evaluation Y is treated in a regression model as a

For each level of midyear performance evaluation , there is postulated

a

FIGURE 1.4
Pictorial
Representation
of Regression
Model.

Probability
Distribution
of Y
0 50 70 90 X

Midyear Evaluation

(b) Figure 1.4: shows probability distributions of Y for midyear evaluation levels
at X =50, X =70 and X = 90. Note that the of the probability

distributions have a systematic relation to the level of X.

(c¢) This systematic relationship is called the

The graph of the regression function is called the

(d) The regression curve, which describes the relation between

and , is the counterpart

to the general tendency of Y to vary with X systematically in a statistical re-

lation.

Construction of Regression Models

1. Selection of Predictor Variables:

(a) Choosing a of explanatory or variables

that is "good” in some sense for the purposes of the analysis.

(111-2) Regression Analysis (T) January 24, 2023
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(b) Other considerations: the of the variable; the degree to which

observations on the variable can be obtained more

than on competing variables; and the degree to which the variable can be

2. Functional Form of Regression Relation:

(a) The functional form of the regression relation is

and must be decided upon once the data have been collected.

(b) The or regression functions are often used as satis-

factory first approximations to regression functions of unknown nature.
3. Scope of Model:

(a) Informulating a regression model, we usually need to

of the model to some interval or region of values of the predictor variable(s).

(b) Example: a company studying the effect of price on sales volume investigated
six price levels, ranging from $4.95 to $6.95. Here, the scope of the model is
limited to price levels ranging from near $5 to near $7. The shape of the
regression function substantially outside this range would be in serious doubt
because the investigation provided no evidence as to the nature of the statistical
relation below $4.95 or above $6.95.

Uses of Regression Analysis

1. Regression analysis serves three major purposes: (1) , (2)
and (3)
2. The several purposes of regression analysis frequently in practice.

Regression and Causality (BRM%)

1. The existence of a statistical relation between the response variable Y and the
explanatory or predictor variable X in any way that Y depends
on X.

(111-2) Regression Analysis (T) January 24, 2023
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2. No matter how strong is the statistical relation between X and Y, no

pattern is necessarily implied by the regression model.

3. Example: data on size of vocabulary (X) and writing speed (Y) for a sample of
young children aged 5-10 will show a positive regression relation. This relation does
not imply, however, that an increase in vocabulary causes a faster writing speed.
Here, other explanatory variables, such as age of the child and amount of education,
affect both the vocabulary (X) and the writing speed (Y). Older children have a

larger vocabulary and a faster writing speed.

4. Regression analysis by itself provides about causal patterns

and must be supplemented by to obtain insights about

causal relations.

Use of Computers

1. Regression analysis often entails lengthy and tedious calculations, computers are

usually utilized to perform the necessary calculations.

2. Almost every statistics package for computers contains a regression component:
BMDP, MINITAB, , , SYSTAT, JMP, S-Plus, MATLAB, and

1.3 Simple Linear Regression Model with Distribu-

tion of Error Terms Unspecified

Formal Statement of Model

1. A simple linear regression model:

(1.1)

where:
(a) Y;: the value of the variable in the
(b) Bo and fy: to be estimated.

(111-2) Regression Analysis (T) January 24, 2023
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(¢) X;: the value of the variable in the ith trial
(d) €: a term with mean and variance
(e) € and e; are so that their covariance is zero (i.e.,

forall 4,551 #j)i=1,---,n.
2. Regression model (1.1) is said to be

(a) simple: there is predictor variable

(b) linear in the : no parameter appears as an exponent or is

multiplied or divided by another parameter

(¢) linear in the variable: because this variable appears only in the

first power.

3. A model that is linear in the parameters and in the predictor variabie is also called

model.

Important Features of Model

1. The response Y; in the ith trial is the sum of two components: (1) the constant term

and (2) the random term . Hence, Y; isa

2. Since E(¢;) = 0, it follows that:

B(Y;) = _ _

Thus, the response Y;, when the level of X in the ith trial is X;, comes from a

probability distribution whose mean is:

The regression function for model (1.1) is:

since the regression function relates the means of the probability distributions of Y’

for given X to the level of X.

(111-2) Regression Analysis (T) January 24, 2023
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3. The response Y; in the ith trial of the value of the re-
gression function ( ) by the error term amount
4. The error terms ¢; are assumed to have constant variance It therefore follows

that the responses Y; have the same constant variance:
(V) = 02

Thus, regression model (1.1) assumes that the probability distributions of Y have

the same variance , regardless of the level of the predictor variable X.

5. Since the error terms ¢; and ¢; are assumed to be uncorrelated, so are the responses

6. Summary: regression model implies that the responses

Y; come from probability distributions whose means are

and whose variances are , the same for all levels of X. Further, any two

responses Y; and Y; are

7. Example: Electrical distributor (Figure 1.6)
A consultant for an electrical distributor is studying the relationship between the
number of bids ( ) requested by construction contractors (FXEIE) for basic
lighting equipment during a week and the number of hours () required to

prepare the bids.
(a) Suppose that regression model (1.1) is:

Y, =95+21X, +¢

(b) The regression function is:

(c) Suppose that in the ith week, X; = 45 bids are prepared and the actual number
of hours required is Y; = 108. We have

EY;) = and ¢ =

(d) The error term ¢; is simply the of Y; from its mean value E(Y;).

(111-2) Regression Analysis (T) January 24, 2023
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FIGURE 1.6

Illustration of

Simple Linear Y, =108
Regression ~—— &= +4
Model (1.1).

EY} = 104

Number of Bids Prepared

Meaning of Regression Parameters

1. The parameters 3y and /31, in regression model (1.1) are called

(a) The parameter [y is the Y of the regression line. f;, is the

of the regression line.

(b) f; indicates the in the mean of the probability distribution of Y’

per unit increase in X.

(¢) When the scope of the model includes , Bo gives the mean of the
probability distribution of Y at X = 0. When the scope of the model does

not cover X =0, Sy as a separate

term in the regression model.
2. Example: Electrical distributor (Figure 1.7)

(a) The regression function: E(Y) = 9.5+2.1X. The slope #; = 2.1 indicates that
the preparation of bid in a week leads to an
in the of the probability distribution of Y of 2.1 hours.

(b) The intercept 5y = 9.5 indicates the value of the regression function at
Since the linear regression model was formulated to apply to weeks where the
number of bids prepared ranges from , Bo = 9.5 does not have

any intrinsic meaning of its own here.
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FIGURE 1.7 Y
Meaning of

Parameters of

Simple Linear
Regression 50
Model (1.1).

Hy}=95+ 21X

Hours

Number of Bids Prepared

Alternative Versions of Regression Model

1. Let be a constant identically equal to . Then, we can write (1.1) as

follows:
where Xy=1

This version of the model associates an X variable with each regression coefficient.

2. An alternative modification is to use for the predictor variable the

rather than Xj;:

where

(111-2) Regression Analysis (I) January 24, 2023
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1.4 Data for Regression Analysis*
1.5 Overview of Steps in Regression Analysis*

1.6 Estimation of Regression Function

Method of Least Squares

1. For the observations for each case, the method of least squares con-

siders the sum of the n squared deviation of Y; from its expected value E(Y;):

Q= (1.8)

2. According to the method of least squares, the estimators of 3y and 3, are those val-
ues by and by respectively, that for the given sample

observations (X1,Y7), (X2, Ys), -+, (Xp, Ya).

FIGURE 1.9 Ilustration of Least Squares Criterion Q for Fit of a Regression Line—Persistence Study

Example.
Y =190+ 0(X) V= 281+ 177X
12 T 12+
2 * g
9 9 .
15 t?*90+0(X) 5 F=2814+.77x
< 4L : T 4L
3} 3
i ! ! 1 ! i
0 20 40 60 X 0 20 40 60 X
Age Age
(@ (b)

3. Example: (Figure 1.9)

(a) Figure 1.9a: Y = 9.0 4+ 0- X. This regression line is not a good fit. The sum

of the squared deviations for the three cases is:

Q=(5-9.0)*+ (12 —-9.0)2 + (10 — 9.0)* = 26.0

(111-2) Regression Analysis (T) January 24, 2023
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(b) Figure 1.9b: Y = 2.81 + 0.177X (the least squares regression line). The

criterion () is much reduced:

Q= (5—16.35)%+ (12 — 12.55)* + (10 — 8.12)* = 5.7

Thus, a better fit of the regression line to the data corresponds to a smaller

sum Q).

4. Least Squares Estimators:

(a) For given sample observations (X;,Y;), the quantity @ in (1.8) is a function
of By and ;. The values of 5y and S, that minimize () can tie derived by

differentiating (1.8) with respect to Sy and [;:

2
9Po
o0Q
e

(b) Set these partial derivatives equal to zero, using by and by (or

to denote the particular values of 5y and i, that minimize Q:

(¢) Normal equations:

)

by and by are called point estimators of By and 3, respectively.

NOTE:

(111-2) Regression Analysis (I)
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(d) The normal equations can be solved simultaneously for by and b;:

boz =

b1:

where X and Y are the means of the X; and the Y; observations, respectively.
5. Properties of Least Squares Estimators:

(a) Gauss-Markov theorem: Under the conditions of regression model (1.1),

the least squares estimators by and b; in (1.10) are and have

among all unbiased linear estimators.

and ,

so that neither estimator tends to overestimate or underestimate systemati-

cally.
(b) The theorem states that the estimators by and b, are (i.e.,
their sampling distributions are ) than any other estimators

belonging to the class of unbiased estimators that are linear functions of the

observations Yi,---,Y,.

(c¢) The estimators by and by are such linear functions of the ;.

(X - X)(Y;i—Y)

A P GE

This expression is equal to:

b1: =

where:

ki =

Since the k; are known constants (because the X; are known constants), b; is

a linear combination of the Y; and hence is a linear estimator.

(d) In the same fashion, it can be shown that by is a linear estimator.

(111-2) Regression Analysis (T) January 24, 2023
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6. Example: The Toluca Company Manufactures Refrigeration Equipment
In the past, one of the replacement parts has been produced periodically in lots
of varying sizes. When a cost improvement program was undertaken, company
officials wished to determine the optimum lot size (X;) for producing this part. The
production of this part involves setting up the production process and machining
and assembly operations. One key input for the model to ascertain the optimum
lot size was the relationship between lot size and labor hours required to produce
the lot. To determine this relationship, data on lot size and work hours (Y;) for 25
recent production runs were utilized. The production conditions were stable during
the six-month period in which the 25 runs were made and were expected to continue
to be the same during the next three years, the planning period for which the cost

improvement program was being conducted.

(a) (Table 1.1) All lot sizes are multiples of 10, a result of company policy to fa-

cilitate the administration of the parts production.

TABLE 1.1 Data on Lot Size and Work Hours and Needed Calculations for Least Squares Estimates—Toluca

Company Example.
O @ G) @ ) 6) @
Lot Work
Run Size Hours _ _
i X ¥ X—-X  %-¥ (x=-X%N-7) (X-X? (¥-¥)?
1 80 399 10 86.72 867.2 100 7.520.4
2 30 121 —40 -191.28 7,651.2 1,600 36,588.0
3 50 221 —20 —91.28 1,825.6 400 8,332.0
23 40 244 -30 —68.28 2,048.4 900 4,662.2
24 80 342 10 29.72 297:2 100 883.3
25 70 323 0 10.72 0.0 0 114.9
- Total 1,750 7,807 0 0 70,690 19,800 307,203
Meari 70.0 312.28

(b) (Figure 1.10a) shows a SYSTAT scatter plot of the data. The scatter plot

indicates that the relationship between and is

reasonably . We also see that no observations on work hours are

, with reference to the relationship between lot

size and work hours.
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FIGURE 1.10 (a) Scatter Plot (b) Fitted Regression Line
SYSTAT 600 600
Scatter Plot @
and Fitted 500 - - 500
Regression o8
Line—Toluca 400 - o 8 . 400
Company S 300 O £ 300
Example. o e L2

200 e °° 200

ee
00 °°® 100
I i 1 1 1 ]
0 50 100 150 0 50 100 150
Lot Size Lot Size

(c) Calculate the least squares estimates:

(X = X)(Y;—Y) 70690
S(X;—X)2 19800

by = Y —b X =312.28 —3.5702(70.0) = 62.37

by = 3.5702

(d) We estimate that the number of work hours

for each additional unit produced in the lot. This estimate applies to the range
of lot sizes (from about to about ) in the data from which

the estimates were derived.

FIGURE 1.11 The regression equation is

Portion of Y =62.4 + 3.57 X

MINITAB

Regression Predictor Coef Stdev t-ratio P
Output— Constant 62.37 26.18 2.38 0.026
Toluca X 3.5702 £.3470 10.29 0.000
Company

Example. 5 = 48.82 R—sq = 82.2}% R-sqladj) = 81.4}

@ R code example:
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iris data

Petal.Length
4
!

Petal.Width
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> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> str(iris)

'data.frame': 150 obs. of &5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 54.44.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1
$ Petal.Length: num 1.4 1.4 1.3 1.51.41.71.41

$ Species : Factor w/ 3 levels "setosa","versicolor",..:
> attach(iris)
> plot(Petal.Width, Petal.Length, main = "iris data", asp = 1)
> iris.lm <- 1lm(Petal.Length ~ Petal.Width)
>

summary (iris.1lm)

Call:
Im(formula = Petal.Length ~ Petal.Width)

Residuals:
Min 1Q Median 3Q Max
-1.33542 -0.30347 -0.02955 0.25776 1.39453

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.08356 0.07297 14.85 <2e-16 **x*
Petal.Width 2.22994 0.05140 43.39 <2e-16 **x*

1 ] I

Residual standard error: 0.4782 on 148 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16

> abline(iris.lm, col = "blue")

Signif. codes: 0 ‘x¥x' 0.001 ‘xx' 0.01 ‘' 0.05 '." 0.

.51.41.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

111111111
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Point Estimation of Mean Response

1. Estimated Regression Function

(a) Given sample estimators by and by of the parameters in the regression function:

we estimate the regression function as follows:

where Y (read ) is the value of the estimated regression function

at the level X of the predictor variable.

(b) We call a value of the response variable a and E(Y) the

(¢) The mean response stands for the mean of the probability distribution of Y

corresponding to the level X of the predictor variable.

(d) Y then is a point estimator of the mean response when the level of the predictor

variable is X.

(¢) An extension of the Gauss-Markov theorem: Y is an estimator of

E(Y), with in the class of unbiased linear estimators.

(f) For the cases in the study, we will call ¥;:

Y, = Ci=1,...,n
the for the ith case. Thus, the fitted value Y; is to be viewed

in distinction to the

2. Example: The Toluca Company Example

(a) (Figure 1.10b) The estimated regression function:

~

Y =62.37 + 3.5702.X

It appears to be a good description of the between

lot size and work hours.
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(b) Suppose that we estimate the mean number of work hours (mean response)

required when the lot size is X = 65 units:

Y = hours

(c) Interpretation: if many lots of 65 units are produced under the conditions of
the 25 runs on which the estimated regression function is based, the mean

labor time for these lots is about 294 hours.

(d) (NOTE] Of course, the labor time for anyone lot of size 65 is likely to fall above
or below the mean response because of inherent variability in the production

system, as represented by the error term in the model.

(e) (Table 1.2) The fitted value for the first case X; = 80 is:

Y, = hours
TABLE 1.2 m @ @ @ ®
Fitted Values, Estimated
me:;lg and Lot Work Mean _ Squared
Squ_ar Run Size Hours Response Residual Residual
Eesiduate— i X Y 7, Vi—fi=e  (G—V)=e
Toluca ! d f = L i
Company 1 80 399 347.98 51.02 2,603.0
Examgple. 2 30 121 169.47 —48.47 2,349.3
3 50 221 240.88 —19.88 395.2
23 40 244 205.17 38.83 1,507.8
24 80 342 347.98 -5.98 35.8
25 70 323 312.28 10.72 114.9
Total 1,750 7,807 7,807 0 54,825

@ R code example:
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> predict(iris.lm, list(Petal.Width = c(0.2, 0.4)))
1 2
1.529546 1.975534
> data.frame(iris.lm$fitted.values, iris.lm$residuals)
iris.Im.fitted.values iris.lm.residuals
1 1.529546 -0.129546132
1.529546 -0.129546132
1.529546 -0.229546132
1.529546 -0.029546132
1.529546 -0.129546132
10 1.306552 0.193447918
3. Alternative Model
(a) When the alternative regression model (1.6) is to be utilized:
the least squares estimator by of 34 as before.

(b) The least squares estimator of 35 = By + 31X becomes

by =

Hence, the estimated regression function for alternative model (1.6) is:

4. In the Toluca Company example, Y = 312.28 and X = 70.0. Hence, the estimated

regression function in alternative form is:

~

Y = 312.28 + 3.5702(X — 70.0)

For the first lot in our example, X; = 80; hence, we estimate the mean response to

be:

Y1 = 312.28 + 3.5702(80 — 70.0) = 347.98

which, of course, is identical to our earlier result.
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FIGURE 1.12
Tllustration of
Residuals—
Toluca
Company
Example (not
drawn to
scale).

Hours

Lot Size
Residuals (BZ%)
1. The ith residual is the difference between the and the cor-
responding . This residual is denoted by
€; =

2. For regression model (1.1), the residual e; becomes:

€; =

3. (Figure 1.12) The magnitude of a residual is represented by the

of the Y; observation from the corresponding point on the estimated regression func-

tion (i.e., from the corresponding fitted value Yz)

NOTE| We need to distinguish between the model error term value

and the residual . The former involves the vertical deviation of Y;

from the unknown true regression line and hence is . On the other

hand, the residual is the vertical deviation of Y; from the fitted value )A/l on the

estimated regression line, and it is

4. Residuals are highly useful for studying whether a given regression model is

for the data at hand.

Properties of Fitted Regression Line

1. The sum of the residuals is zero:
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doe=) Yi—b—bXi)=) Yi—nby—bi Y X

NOTE] Rounding errors may, of course, be present in any particular case, resulting in a

sum of the residuals that does not equal zero exactly.

2. The sum of the squared residuals, , is a minimum. This was the re-
quirement to be satisfied in deriving the least squares estimators of the regression

parameters.

3. The sum of the observed values Y; equals the sum of the fitted values l?;

NOTE:

4. The sum of the weighted residuals is zero when the residual in the ith trial is

weighted by the level of the predictor variable in the ¢th trial:

NOTE:

5. The sum of the weighted residuals is zero when the residual in the ith trial is

weighted by the fitted value of the response variable for the ith trial:

NOTE:
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6. The regression line always goes through the point

I
=~

Y =

NOTE:

1.7 Estimation of Error Terms Variance o2

Point Estimator of o2

1. The variance o of the in regression model (1.1) needs to be
estimated to obtain an indication of the of the probability distribu-
tions of Y. A variety of (#38) concerning the regression function

and the prediction of Y require an estimate of o

2. Single Population: The estimator of the variance o2 is the sample variance s:

82:

which is an estimator of the variance o2 of an infinite population.

The sample variance is often called a , because a sum of squares

has been divided by the appropriate number of

3. Regression Model

(a) We need to calculate a , but must recognize

that the Y; now come from probability distributions with

means that depend upon the level X;. The deviations are the

and the appropriate sum of squares, denoted by , 1s:

SSE =

where SSE stands for or
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(b) The sum of squares SSE has degrees of freedom associated with

it. Two degrees of freedom are lost because both had to

be estimated in obtaining the estimated means Y;. Hence, the appropriate
, denoted by MSE or s2, is:

s = MSE =
where MSE stands for or
(¢) It can be shown that MSE is an estimator of o2 for regression

model (1.1):

4. Example: The Toluca Company Example

(a) (Table 1.2) we obtain: SSE = 54,825 and

A point estimate of o, the standard deviation of the probability distribution
of Y for any X, is s = /2,384 = 48.8 hours.

(b) Consider again the case where the lot size is X = 65 units. We found earlier
that the mean of the probability distribution of Y for this lot size is estimated
to be 294.4 hours. Now, we have the additional information that the standard

deviation of this distribution is estimated to be 48.8 hours.

FIGURE 1.13 #=230 r =259
Densities for
Sample
Observations
for Two
Possible Values
ofj: ) = 250,
Y, = 265,

Y3 = Eg.

-259 1

4

LI O £%
(@) (b
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1.8 Normal Error Regression Model

Model

1. To set up and make , however, we need to make

an assumption about the form of the distribution of the error terms ¢;: they are

2. The normal error regression model:

i=1,--,n, (1.24)

Y;: the in the ith trial.

(a)
(b) variable in the ith trial.
)
)

X;: known constant, the level of the

(¢) Bo and fi: to be estimated.

(d) €;: independent normally distributed, with mean 0 and variance o2 (

3. (Figure 1.6) Regression model (1.24) implies that the are independent nor-

mal random variables, with mean and variance

FIGURE 1.6
Ilustration of
Simple Linear
Regression
Model (1.1).

0 25 45 X
Number of Bids Prepared

4. The normality assumption for the error terms is in many situations

because

omitted from

(a) the error terms frequently represent the

the model that to some extent and that

without reference to the variable X.
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(b) the estimation and testing procedures are based on the and

are usually only sensitive to large departures from . Thus, un-

less the departures from normality are , particularly with respect

to , the actual confidence coefficients and risks of errors will be

close to the levels for

Estimation of Parameters by Method of Maximum likelihood

1. Single Population*
2. Regression Model

(a) For the normal error regression model (1.24), each Y; observation is normally

distributed with mean and standard deviation

(b) The density of an observation Y; for the normal error regression model (1.24)
is:

fi=

(c) The (DIBEMEEREY) for n observations Y7, Ys, .-+, Y, is

the product of the individual densities. Since the variance o2 of the error terms

is usually unknown, the likelihood function is a function of three parameters,

L(ﬁ()aﬂlaO_Q) =

(d) The values of By, 31, and o? that maximize this likelihood function are the

(ERAEEETE) and are denoted

by , respectively.

(e) We find the values of 3, 31 and o2 that maximize the logarithm of likelihood

function log L:

log L =

(111-2) Regression Analysis (T) January 24, 2023
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(f) Partial differentiation of the logarithm of the likelihood function:

d(log L)

= = 0
9fo

Jd(log L)
b

d(log L)

(g) Set these partial derivatives equal to zero, replacing, By , 81 and o2 by the

estimators 3, , 81 and &%

=0
=0
= 52
(h) The MLE of 5y and f3; are the as those provided by the
method of

bo = = by

b = = b

5 =

(i) The maximum likelihood estimator 62 is biased, and ordinarily the unbiased

estimator is used.

NOTE| The unbiased estimator MSE or s? differs but slightly from the maximum

likelihood estimator 62, especially if n is not small:

s>= MSE =
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3. Properties:
Since the maximum likelihood estimators Bo and Bl, are the same as the least squares

estimators by and b; they have the properties of all least squares estimators:

(a) They are

(b) They have among all unbiased linear estimators.

(¢) In addition, the maximum likelihood estimators By and f3;, for the normal
error regression model have other desirable properties: (A.

52), (A.53) and the estima-

tors (linear or otherwise).

0 QUESLION ...\ (p72)
Assume the normal error regression model:

Y= Po+ i Xi + e
Find the estimation of parameters using method of maximum likelihood.

sol:

® TA Class

4 N

« Problems: 1.6, 1.7, 1.18, 1.20, 1.24

« Exercises: 1.32, 1.33, 1.35, 1.36, 1.41

e Projects: 1.43

\_ /
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Regression Analysis (1)
Kutner's Applied Linear Statistical Models (5/E)

Chapter 2: Inferences in Regression and Correlation Analysis I

Thursday 09:10-12:00, BEEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University

http://www.hmwu.idv.tw

Overview

1. Take up inferences ( ) concerning the regression

parameters 5y and ;.

2. Discuss interval estimation of the mean FE(Y') of the probability distribution of Y,
for given X, prediction intervals for a new observation Y, confidence bands for the
regression line, the analysis of variance approach to regression analysis, the general

linear test approach, and descriptive measures of association.

3. Assume that the normal error regression model (1.24) is applicable:

where [y and i, are parameters, X; are known constants, ¢; are independent

2.1 Inferences Concerning [;

1. Testing whether or not is that, when 3; = 0, there is no

between Y and X.

(111-2) Regression Analysis (I) January 24, 2023


http://www.hmwu.idv.tw

Chapter 2: Inferences in Regression and Correlation Analysis Page 2/26

2. For normal error regression model (2.1), the condition 3; = 0 follows that the
probability distributions of Y are . There is no relation of any type
between Y and X.

Sampling Distribution of 31
0 QUESEION ... (p42)

For normal error regression model (2.1), show that by, the point estimator of i, is

a linear combination of the observation Y;. That is

X,— X
X

by =) kY, where k’:Z(X@ 2

sol:

2 QUESLION ...\ (p42)

For normal error regression model (2.1), if b; is expressed as by = Y k;Y;, show that

1
d ki=0, Y kX;=1and Zkf:m.

sol:
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2 QUESLION oo (pa1)

For normal error regression model (2.1), show that the sampling distribution of by,

the point estimator of 3, is normal, with mean and variance:

0.2

E(b) =fy, and o*(by) = SR, X > ko,

sol:

2 QUESLION ...\ (p43)

Show that b; has minimum variance among all unbiased linear estimator of the form:

B = Z ¢Y;
where the ¢; are arbitrary constants.

sol:
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Sampling Distribution of (b; — 31)/s(b1)

1.

2.

3.

Since by is normally distributed, we know that the standardized statistic

is a standard normal variable.

We need to estimate o(b;) by , and hence are interested in the distribution
of the statistic (b — 81)/s(b1).

When a statistic is standardized but the denominator is an estimated standard devi-

ation rather than the true standard deviation, it is called a

2 QUESLION - o (pasd)
by —
Show the studentized statistic — 0 )ﬁl is distributed as t(,_g) for regression model
S(01
(2.1).
sol:
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Confidence Interval for (5,

2 QUESLION ..o (p45)
Find the (1 — )% confidence interval for f;.

sol:

0 QUESLION ...\ (p45)

(Toluca Company Example) Management wishes an estimate of 8, with 95 percent

confidence coeflicient.

sol:
Obtain

MSE 2,384
S(X; —X)2 19,800

s*(by) = =0.12040, s(by) = 0.3470.

For a 95 percent confidence coefficient, we find #(.975.23) = 2.069. The 95

percent confidence interval:
3.5702 — 2.069(0.3470) < By < 3.5702 + 2.069(0.3470)

= 285 < 3 < 4.29

Thus, with confidence coefficient .95, we estimate that the mean number of
work hours increases by somewhere between 2.85 and 4.29 hours for each ad-

ditional unit in the lot.
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FIGURE 2.2 The regression equation is

Portion of Y=62.4+ 3.57T X

MINITAB

Regression Predictor Coef Stdev t-ratio P
Output— Constant 62.37 26.18 2.38 0.026
Toluca X 3.5702 0.3470 10.29 0.000
Company

Example. s = 48.82 R-sq = 82.2] R-sq(adj) = 81.4J,

Analysis of Variance

SOURCE DF ss8 M3 F P
Regression 1 262378 262378 105.88 0.000
Error 23 54825 2384

Total 24 307203

Tests Concerning [,

2 QUESLION ...\ (p47)

Two-Sided Test A cost analyst in the Toluca Company is interested in testing,
using regression model (2.1), whether or not there is a linear association between
work hours and lot size, i.e., whether or not, g; = 0. Please conduct the Two-Sided

Test for this problem and control the risk of a Type I error at o = 0.05.

sol:
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2 QUESLION oo (pa7)

One-Sided Test Suppose the analyst in the Toluca Company had wished to test
whether or not , (1, is positive, controlling the level of significance at a = 0.05.
Please conduct the One-Sided Test for this problem.

sol:

Comments:

1. The P-value is sometimes called the

2. Many scientific publications commonly report the P-value together with the value
of the test statistic. In this way, one can conduct a test at any desired level of

significance a by comparing the P-value with the specified level a.

3. Users of statistical calculators and computer packages need to be careful to ascertain

whether or P-values are reported.

4. Tt is desired to test whether or not [3; equals some specified nonzero value

The alternatives are:

versus

and the appropriate test statistic is:
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2.2 Inferences Concerning j

1. The point estimator by:

2. The sampling distribution of by is normal, with mean and variance:

E(by) = , 02(by) =

3. An estimator of o%(by) is obtained by replacing o2 by its point estimator

s%(bo) =

4. The sampling distribution of (by — fy)/s(bo) is for regression model (2.1)

5. The confidence intervals for [, is

2.3 Some Considerations on Making Inferences Con-

cerning [, and (;

Effects of Departures from Normality

1. If the probability distributions of Y are not exactly normal but

, the sampling distributions of by and b; will be approximately

and the use of the ¢ distribution will provide approximately the specified confidence

coefficient or level of significance.

2. Even if the distributions of Y are far from normal, the estimators by and b, gener-

ally have the property of - their distributions approach

normality under very general conditions as the increases.

Interpretation of Confidence Coefficient and Risks of Errors

1. Since regression model (2.1) assumes that the X; are known constants, the confi-

dence coefficient and risks of errors are interpreted with respect to taking

in which the X observations are kept at the same levels as in the observed sample.
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2. (Toluca Company Example) The meaning of a confidence interval (CI) for f;, with
confidence coefficient 0.95: if many independent samples are taken where the levels
of X (the lot sizes) are the same as in the data set and a 95 percent confidence inter-

val is constructed for each sample, of the intervals will

the true value of f;.

Spacing of the X levels

1. For given n and o2, the variances of b; and by are affected by the spacing of the X

levels in the observed data.

2. The is the spread in the X levels, the larger is the quantity

and the is the variance of b;.

Power of Tests

(NOTE: The power of tests on 3y and f;, can be obtained from Appendix Table B.5.)
1. The general test concerning [3:

Hy : versus H, :

2. Test statistic: t* =

3. Decision rule for level of significance a:

If , conclude H,.

If [t*] > t(1—a/2m—2), conclude H,.

4. The power of this test is the probability that the decision rule will lead to conclusion
H, when H, in fact holds:

Power =

where 0 is the noncentrality measure - i.e., a measure of how far the true value of

51, is from 5102
5 ==
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2 QUESLION oo (p51)
In Toluca Company example, conduct the test for:

Hy: By = Bio=0, versus H,: B # fio=0.
Calculate the power of the test when g; = 1.5.

sol:

2.4 Interval Estimation of F(Y},)

1. Let denote the level of X for which we wish to estimate the mean response.

2. X} may be a value which occurred in the sample, or it may be some other value of

the predictor variable within the scope of the model.

3. The mean response when X = X}, is denoted by . The point estimator
Yh of £ (Yh) is

2 QUESLION ...\ (p52)

For normal error regression model, show that the sampling distribution of Y, is

normal, with mean and variance:

E(Y,)=EY,) and (V) =0 %+% .

sol:
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FIGURE 2.3 y Estimated Regression
Effect on ¥, of from Sample 1
Variation in b, 7
from Sample to
Sample in Two
Samples with Yr
Same Means Y V Estimated Regression
and X. from Sample 2
L 1
X‘l R XZ X

The variability of the sampling distribution of Y, is affected by how far X, is from X
through the term

Sampling Distribution of (Y, — E(Y}))/s(Y3)

Y, — E(Y;
1. h—A(h) is distributed as for regression model (2.1).

s(Yn)

Confidence Interval for E(Y})

1. A (1 —a)% confidence interval for F(Y},) is

, s(Y) =
2 QUESLION ...\ (p54)
In the Toluca Company example, find a 90% CI for E(Y}) when the lot size is
X}, = 65 units.
sol:
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2.5 Prediction of New Observation

The new observation on Y to be predicted is viewed as the result of a new trial, indepen-
dent of the trials on which the regression analysis is based. We denote the level of X for

the new trial as and the new observation on Y as

Prediction Interval for Y},,.,) when Parameters Known

In general, when the regression parameters of normal error regression model (2.1) are

known, the (1 — a)% prediction limits for Yj,(,e) are:

E(Yh) + Z(l_a/g)O'

Prediction Interval for Yj,,.,) when Parameters Unknown

2 QUESLION ...\ (p58)

Yh(new) - yh
s(pred)
Find the prediction limits for a new observation Y} (new) at a given level Xj,.

As we know, is distributed as ¢(,,_9) for a normal error regression model.

sol:
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FIGURE 2.5 Prediction Prediction
Prediction of e—— Limits — Limits

Y hnew) When if E{Y;} Here if E{Y})} Here
Parameters l l
Unknown.

e N N

, -
1 Ya
i
I

t«———— Confidence Limits for E{Ys} ——

0 QUESLION ...\ (p59)

The Toluca Company studied the relationship between lot size and work hours pri-
marily to obtain information on the mean work hours required for different lot sizes
for use in determining the optimum lot size. The company was also interested, how-
ever, to see whether the regression relationship is useful for predicting the required
work hours for individual lots. Find a 90 percent prediction interval for the number

of work hours for the next production runs of X; = 100 units.

sol:
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Prediction of Mean of m New Observations for Given X},

1. Denote the mean of m new Y observations to be predicted as . The 1—«

prediction limits are, assuming that the new m Y observations are independent:

where
s*(predmean) =
or equivalently:
s*(predmean) =
2 QUESLION ...\ (p61)

In the Toluca Company example, find the 90 percent prediction interval for the mean

number of work hours Yh(new) in three new production runs, each for X; = 100 units.

sol:

2.6 Confidence-Band for Regression Line

1. A confidence band for the entire regression line E(Y') = 3y + ;X enables us to see
the in which the entire regression line lies. It is particularly useful for

determining the appropriateness of a fitted regression function.
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2. The Working-Hotelling (1—a)% confidence band for the regression line for regression

model (2.1) has the following two boundary values at any level X:

,  where

2 QUESHION ...\ (p62)

Find the 90 percent confidence band for the regression line to determine how pre-
cisely we have been able to estimate the regression function for the Toluca Company

example.

sol:

2.7 Analysis of Variance Approach to Regression Anal-
ysis
Partitioning of Total Sum of Squares

1. The variation is measured in terms of the deviations of the Y; around their mean

Y:

2. SSTO (total sum of squares): the measure of total variation is the sum of the

squared deviations:

3. SSE (error sum of squares): the measure of variation in Y; that is present when the

predictor variable X is taken into account:

4. SSR (regression sum of squares):
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FIGURE 2.7 Illustration of Partitioning of Total Deviations ¥; — ¥—Toluca Company Example (not drawn to
scale; only observations Y; and Y, are shown).

@ (b) ©
Deviations ¥, — ¥

Total Deviations ¥; — ¥ Deviations ¥; — ¥;

¥a

}I/‘ 1 |

0 30 80
Lot Size

€ QUESLION ... (p65)

Show that SSTO =SSR+ SSE. That is

sol:
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Breakdown of Degrees of Freedom

1. Corresponding to the partitioning of the total sum of squares SSTO, there is a

partitioning of the associated degrees of freedom (df).

2. SSTO has degrees of freedom associated with it. One degree of freedom
is lost because the deviations are subject to one constraint: they must
sum to . Equivalently, one degree of freedom is lost because the sample

mean Y is used to estimate the population mean.

3. SSE has degrees of freedom associated with it. Two degrees of freedom
are lost because the two parameters are estimated in obtaining the
fitted values }A/Z .

4. SSR has degree of freedom associated with it. Although there are n
deviations , all fitted values Y; are calculated from the same estimated

regression line.

Mean Squares

1. A sum of squares divided by its associated degrees of freedom is called a

(MS).

2. The regression mean square:

3. The error mean square:

Analysis of Variance Table

1. Basic Table:

(a) The breakdowns of the total sum of squares and associated degrees of freedom
are displayed in the form of an analysis of variance table
in Table 2.2.

(b) The ANOVA table contains a column of that will
be utilized.
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TABLE 2.2
Source of
ONOVA Table yariation s df Ms E{Ms}
or Simple SR
Linear Regression  SSR=(f; — ¥)? 1 MSR = == oZ + B2 3(Xi — X)?
Regression. 9 > ) 1 B > ( )
Error SSE=3 (Y, — )2 n—2 MSE = n—SS—EZ- a?
Total SSTO=Y (Y, - V2  n—1

2. Modified Table:

(a) The modified ANOVA table is based on the fact that the total sum of squares

can be decomposed into two parts:

SSTO =

(b) In the modified ANOVA table, the total
denoted by SSTOU, is defined as:

SSTOU =

sum of squares,

and the correction for the mean sum of squares, denoted by SS(correction for

mean), is defined as:

SS(correction for mean) =

TABLE 2.3

Source of
Modified 5
ANOVA Table Variation df Ms .
for Simple Regression SSR=3"(¥, — )2 1 MSR=222
Linear 1
Regression. Error SSE= Y (Y, — #)? i~ 2 MSE = %
Total S§STO =3 (Vi — ¥)? n—1
Correction for mean SS(correction 1
for mean) = n¥?
Total, uncorrected SSTOU=Y_Y? n
Expected Mean Squares
2 QUESLION ...\ (p68)
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Show that

E(MSE) = o¢° and
E(MSR) = o>+ /1) (X;—X)”

sol:

F Test of $; =0 versus f; # 0

1. The analysis of variance provides us with a test for:

versus

2. Test Statistic: The test statistic for the analysis of variance approach is denoted
by F™*:
F* =

3. Large values of F* support and values of F* near support Hy.
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€2 QUESLION ...\ (p70)
Show that if Hy holds, F* follows the F{;,_o) distribution.

sol:

1. Construction of Decision Rule: Since the test is upper-tail and £ is distributed
as F(1,—2) when Hj holds, the decision rule is as follows when the risk of a Type I

error is to be controlled at a:

If , conclude Hy,

If F* > F1_q:1,n—2), conclude H,
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2 QUESLION oo (p71)

For the Toluca Company example, conduct a F' test for Hy : 51 = 0 versus H, :

b # 0.

sol:

2 QUESLION ...\ (p71)

Show that for a given « level, the F' test of 5; = 0 versus f; # 0 is equivalent
algebraically to the two-sided ¢ test.

sol:
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2.8 General Linear Test Approach

Full Model

1. For the simple linear regression case, the full model or unrestricted model is the

normal error regression model:

2. The error sum of squares for the full model:

SSE(F) = -

3. SSE(F) measures the variability of the Y; observations around the fitted regression

line.

Reduced Model

1. Consider Hy : 8y = 0 versus H, : f1 # 0, the model when H, holds is called the

reduced or restricted model:

2. The error sum of squares for the reduced model:

SSE(R) = - _

Test Statistic

1. It can be shown that SSE(F') never is greater than SSE(R):

2. The actual test statistic is a function of SSE(R) — SSE(F),

F* =

which follows the F' distribution when H{ holds.
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3. The decision rule therefore is:

If , conclude Hy

If F* > F_a.dfp—dfedfe), conclude H,
4. For testing whether or not 5, = 0, we therefore have:
SSE(R)=SSTO, SSE(F)=SSE, dfgp=n—1, dfr=n-—2,
so that we obtain

F*: = =

which is identical to the analysis of variance test statistic.

2.9 Descriptive Measures of Linear Association be-

tween X and Y

Coefficient of Determination

1. The coefficient of determination R? is defined to measure the effect of X in reducing

the variation in Y. It is expressed as the reduction in variation

as a proportion of the total variation:

R* = =

2. We may interpret R? ( ) as the proportionate reduction of total

variation associated with the use of the predictor variable X.

3. The larger R? is, the more the total of Y is reduced by introducing

the predictor variable X.
4. The limiting values of R? may occur:

(a) When all observations fall on the fitted regression line, then

and . The predictor variable X accounts for in

the observations Y;
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(b) When the fitted regression line is horizontal so that and

then and . There is no linear association be-

tween X and Y in the sample data.

FIGURE 2.8 (@R =1 (b) RZ =0
Scatter Plots  y .
when R? =1
and R? = 0.
e ° e °® y=¥
@ ° o ¢
V= by + X
X X

limitations of R?: three common misunderstandings

1. Misunderstanding 1: A high R? indicates that can be

made. (not necessarily correct)

(a) (Toluca Company Example) the coefficient of determination was high (R? =
0.82). Yet the 90 percent prediction interval for the next lot, consisting of
100 units, was wide (332 to 507 hours) and not precise enough to permit

management to schedule workers effectively.

(b) Misunderstanding 1 arises because R? measures only a

from SSTO and provides no information about absolute precision for estimat-

ing a mean response or predicting a new observation.

2. Misunderstanding 2: A high R? indicates that the estimated regression line is a

. (not necessarily correct)

(a) (Figure 2.9a) a scatter plot where R? is high (R* = 0.69). Yet a linear regres-

sion function would not be a good fit since the regression relation is curvilinear.

3. Misunderstanding 3: A R? near zero indicates that X and Y are not related.

(not necessarily correct).
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(a) (Figure 2.9b) a scatter plot where R? between X and Y is R? = 0.02. Yet X
and Y are strongly related; however, the relationship between the two variables

is curvilinear.

(b) Misunderstandings 2 and 3 arise because R? measures the degree of

between X and Y, whereas the actual regression relation may be curvilinear.

FIGURE 2.9 (a) (b)
lustrations Scatter Plot with R? = .69 Scatter Plot with R? = .02
of Two Misun- Linear regression is not a good fit Strong relation between X and ¥
derstandings 14 ~ 15
about o %
Coefficient of 12k e @
Determination. ° - . ®
@
10
10+ L) e
S . e L]
8t ¢ e
N 5 ¢ e
61 e *
4 A I 1 1 | —— S N R
0 2 4 6 8 10 0 5 10 15
X X

Coefficient of Correlation

1. A measure of linear association between Y and X when both Y and X are random

is the coefficient of correlation. This measure is the signed square root of R?:

2. A plus or minus sign is attached to this measure according to whether the slope of

the fitted regression line is or . Thus, the range of r is:

(111-2) Regression Analysis (T) January 24, 2023



Chapter 2: Inferences in Regression and Correlation Analysis Page 26/26

2.10 Considerations in Applying Regression Analy-

1ok

S1S

2.11 Normal Correlation Models*

® TA Class

4 )

« Problems: 2.5, 2.8, 2.10, 2.14, 2.17, 2.24, 2.30, 2.31, 2.32

« Exercises: 2.50, 2.55

o Projects: 2.62

N /
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Regression Analysis (1)
Kutner's Applied Linear Statistical Models (5/E)

Chapter 3: Diagnostics and Remedial Measures I

Thursday 09:10-12:00, BEEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University

http://www.hmwu.idv.tw

Overview

1. The features of the model, such as of the regression function or

of the error terms, may not be appropriate for the particular data.

2. It isimportant to examine the aptness of the model for the data before

based on that model are undertaken.

3. Use some simple methods to study the appropriateness of a model, as

well as some

4. Consider some techniques that can be helpful when the data are not

in accordance with the conditions of regression model (2.1).

3.1 Diagnostics for Predictor Variable

1. Diagnostic for the predictor variable to see if there are any

that could influence the appropriateness of the fitted regression function.
2. Example: Toluca Company Example

(a) (Figure 3.1a) : the minimum and maximum lot sizes are

20 and 120, respectively, that the lot size levels are spread throughout this

interval, and that there are no lot sizes that are far

(111-2) Regression Analysis (T) January 24, 2023
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(b) (Figure 3.1b) . lot size is plotted against production

run (i.e., against time sequence). The plot had shown that smaller lot sizes

had been utilized early on and larger lot sizes later on.

(¢) (Figure 3.1c) : provides information similar to a

frequency . The letter M denotes the median, and the letter
H denotes the first and third quartiles.

(d) (Figure 3.1d) : the middle half of the lot sizes range from
50 to 90, and that they are fairly distributed because the

median is located in the middle of the central box.

FIGURE 3.1 MINITAB and SYGRAPH Diagnostic Plots for Predictor Variable—Toluca Company Example.

(a) Dot Plot (b) Sequence Plot
150
[ ] [ ] L] [ ] : ]00 B
e o o o o s o o s o N
} i } } f } =
20 40 60 80 100 120 S
Lot Size 50
1 | |
0 10 20 30
Run
(c) Stem-and-Leaf Plot (d) Box Plot
2 0
3 000
4 00
5H 000 — %
2 G % : : z % :
2 40 0 120
8 000 0 6 ‘ 80 100
9H 0000 Lot Size
10 00
11 00
i2 0
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3.2 Residuals

1. Diagnostics for the response variable are usually carried out indirectly through an

examination of the

2. The residual e; is the difference between the observed value Y; and the fitted value

~

Y;:

3. The residual may be regarded as the , in distinction to the

unknown true error ¢; in the regression model:

4. For regression model (2.1), the error terms ¢; are assumed to be

random variables, with mean and constant variance If
the model is appropriate for the data at hand, the observed residuals e; should then

reflect the properties assumed for the ¢;.

Properties of Residuals

1. Mean

(a) The mean of the n residuals e; for the simple linear regression model (2.1) is

always 0:

(b) It provides as to whether the true errors ¢; have expected

value

2. Variance

(a) The variance of the n residuals e; for regression model is

82:

(b) If the model is appropriate, MSE is an estimator of the variance

of the error terms 2.

3. Nonindependence

(a) The residuals e; are random variables because they in-
volve the fitted values Y; which are based on the fitted regression
function.
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(b) The residuals for regression model (2.1) are subject to two constraints. These

are constraint (1.17) - - and constraint (1.19) -

(¢) When the is large in comparison to the number of

in the regression model, the dependency effect among the residuals e; is rela-

tively unimportant and can be for most purposes.

Semistudentized Residuals

1. Since the standard deviation of the error terms ¢; is o, which is estimated by

, it is natural to consider the residuals:

2. Both semistudentized residuals and studentized residuals can be very helpful in

identifying observations. (details in Chapter 10)

Departures from Model to Be Studied by Residuals

1. We shall consider the use of residuals for examining six important types of depar-

tures from the simple linear regression model (2.1) with normal errors:

a) The regression function is not

The error terms are not

(c

(a)

(b) The error terms do not have
)

(

d) The model fits all but one or a few observations.

(e) The error terms are not distributed.

(f) One or several variables have been omitted from the
model.
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3.3 Diagnostics for Residuals

1. Some informal diagnostic plots of residuals to provide information on whether any

of the six types of departures from the simple linear regression model (2.1)

(a) Plot of residuals against variable.

(b) Plot of or residuals against predictor variable.
(c) Plot of residuals against . (the most important)

(d) Plot of residuals against or other sequence.

(e) Plots of residuals against variables.

(f) Box plot of residuals.
(2) of residuals.

2. (Figure 3.2) Toluca Company example: plots of the residuals against the predictor

variable and against time, a box plot, and a normal probability plot.
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FIGURE 3.2 MINITAB and SYGRAPH Diagnostic Residual Plots—Toluca Company Example.
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1. Residual plot: whether a linear regression function is appropriate for the data be-

ing analyzed can be studied from a

against the

2. Nonlinearity of the regression function can also be studied from a

but this plot is not always as effective as a residual plot.

3. Ridership - Transit Example (Figure 3.3)(TABLE 3.1)

(a) One would like to study the relation between maps distributed and bus rider-

ship in eight test cities. Let X be the number of bus transit maps distributed

free to residents of the city at the beginning of the test period and Y be the

(111-2) Regression Analysis (T)
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increase during the test period in average daily bus ridership during nonpeak

hours.

(b) (Figures 3.3) the lack of linearity of the regression function.

(¢) In general, the residual plot is to be preferred.

It can clearly show any

in the deviations around the fitted regression line.

FIGURE 3.3
Scatter Plot
and Residual
Plot
Ilustrating
Nonlinear
Regression
Function—
Transit
Example.

Increase in Ridership (thousands)

(a) Scatter Plot

¥=—-1.82 +.0435X

i I 1
100 140 180 220
Maps Distributed (thousands)

Residual

(b) Residual Plot

1 1 L |
100 140 180 220
Maps Distributed (thousands)

4. (Figure 3.4a) the residual plot against X when a linear regression model is

The residuals then fall within a horizontal band centered around 0, displaying no

systematic tendencies to be positive and negative.

5. (Figure 3.4b) a departure from the linear regression model that indicates the need

for a

regression function. Here the residuals tend to vary in a

systematic fashion between being

FIGURE 3.4 e

Residual Plots.

Prototype
| l)
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Nonconstancy of Error Variance
1. The residuals plot is also helpful to examine whether the variance of the error terms
1S

2. Plots of the values of the residuals or of the residu-
als against the predictor variable X or against the fitted values Y are also useful

for diagnosing of the error variance since the of the

residuals are not meaningful for examining the constancy of the error variance.

3. Blood Pressure - Age Example

(a) A study of the relation between diastolic blood pressure of healthy, adult
women (Y) and their age (X).

(b) (Figure 3.5) The residual plot suggests that the older the woman is, the more

the residuals are.

(c) Since the relation between blood pressure and age is positive, this suggests

that the error variance is women than for younger ones.

(d) (Figure 3.5b) a plot of the absolute residuals against age for the blood pressure
shows more clearly that the residuals tend to be larger in absolute magnitude

for older-aged women.

FIGURE 3.5 (2) Residual Plot against X (b) Absolute Residual Plot against X
Residual Plots 20 . 20 .
Nonconstant . . o ®
Error 10 " o e * s 15 e,
Variance. - o °° s " " T * L
g * o . . (\1)":
z 0 _"'.—l""_'_T"—r_" g 10
& * o . o . 2
e ° o ' * g
_-'0 - ® [l ... * 3 < 5
L]
*e
L]
—20 1 ! 1 i ] 0
10 20 30 40 50 60 10 20 30 40 50 60
Age Age

4. (Figure 3.4c) a residual plots when the error variance increases with X. One can

also encounter error variances with increasing levels of the predictor

variable and occasionally varying in some more complex fashion.
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FIGURE 3.4 . e
Prototype
Residual Plots.

X Time
© =

Presence of Outliers

1. Residual (extreme observations) can be identified from residual plots
against X or Y, as well as from box plots, stem-and-leaf plots, and dot plots of the

residuals.

2. A rough rule of thumb when the number of cases is large is to consider

with absolute value of to be outliers. (details in Chapter 10).

3. (Figure 3.6) The residual plot in presents semistudentized residuals and contains

one outlier, which is circled.

FIGURE 3.6 ¢

Residual Plot MSE

with Outlier.
s 6 ®
3 5F
g 4T
- 3F
.g 2 . . .
E 1F P .n® *e
g 0 = '.' “oe® ®e o :l".
L1k e . o * *
§-2r .
v _3 -

X
4. How to deal with outliers:
(a) A safe rule frequently suggested is to only if there is

direct evidence that it represents an error in recording, a miscalculation, a

malfunctioning of equipment, or a similar type of circumstance.

(111-2) Regression Analysis (T) January 24, 2023



Chapter 3: Diagnostics and Remedial Measures Page 10/43

(b) Under the least squares method, a fitted line may be pulled disproportionately
an outlying observation because the sum of the squared deviations

is minimized.
(c) This could cause a misleading fit if indeed the outlying observation resulted

from a mistake or other extraneous cause.

5. (Figure 3.7) The fitted regression is by the outlier that the residual

plot suggest a lack of fit of the linear regression model.

FIGURE 3.7 (a) Scatter Plot (b) Residual Plot
pistorting 551 " 4 .
Effect on
Residuals -
Cansed by an 451 2k
Qutlier When - »
Remaining . s 1t
Data Follow > 350 é g ® e
Linear ~ or
Regression. . o
251 . =tr .
)
° -l
15 hd ! 1 1 | J 1 L ! L0 | )
2 4 6 8 10 12 2 4 6 8 10 12
X X

Nonindependence of Error Terms

1. A sequence plot of the residuals: the purpose of plotting the residuals against

time or in some other type of sequence is to see if there is any

between error terms that are near each other in the sequence.

2. Linear Time-related Trend Effect

(a) (Figure 3.8a) contains a time sequence plot of the residuals in an experiment to
study the relation between the diameter of a weld (X) and the shear strength
of the weld (Y).

(b) An evident correlation between the error terms stands out.

residuals are associated mainly with the early trials, and residuals
with the later trials.
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(c) It is sometimes useful to view the problem of nonindependence of the error

terms as one in which an important variable (in this case,

omitted from the model.

) has been

FIGURE 3.8 Residual Time Sequence Plots Illustrating Nonindependence of Error Terms.

Residual

(a) Welding Example Trend Effect

1 1 1 1 | 1

3 5 7 9 1 13
Time Order of Weld

Residual

(b) Cyclical Nonindependence

Time Order

3. Cyclical Nonindependent

(a) (Figure 3.8b) the adjacent error terms are also related, but the resulting pattern

is a cyclical one with no trend effect present.

(b) When the error terms are , we expect the residuals in a se-

quence plot to in a more or less random pattern around the

base line 0.

Nonnormality of Error Terms

1. Small departures from normality do not create any serious problems.

2. The normality of the error terms can be studied informally by examining the resid-

uals in a variety of ways.

3. Distribution Plots A box plot, histogram, dot plot, or stem-and-leaf plot of the
residuals can be helpful for detecting gross departures from normality. Note that

the number of cases in the regression study must be for any of

of the distribution

these plots to convey reliable information about the

of the error terms.

4. Comparison of Frequencies Another possibility when the number of cases is

reasonably large is to compare frequencies of the residuals against
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frequencies under . For example, one can determine

whether, say, about 68 percent of the residuals e; fall between or

about 90 percent fall between

. Normal Probability Plot of the residuals Each residual is plotted against its

under normality. A plot that is nearly linear suggests agree-

ment with normality, whereas a plot that departs substantially from linearity sug-

gests that the error distribution is not normal.

2 QUESLION ...\ e (p111)

In Toluca Company example, find the expected values of the ordered residuals under

normality.
sol:
FIGURE 3.2 MINITAB and SYGRAPH Diagnostic Residual Plots
LE 3.2 —Toluca Company Example.
w 0 @ @ )
Residuals and Ex ed (d) Normal Probability Plot
'C t 150
mﬁi der Run Residual Rank Value under
Normality— i e k Normality 100} e
Toluca 1 51.02 22 51.95 _ gl o
Company 2. —48.47 5 —44.10 3 o
Example. 3 -19.88 10 ~14.76 g o -
23 38.83 19 31.05 “sof e
24 —5.98 13 0] - v
25 10.72 17 19.93 Y ya— 0 50 100
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5. Three normal probability plots when the distribution of the error terms departs
substantially from normality.

(a) (Figure 3.9a) shows a normal probability plot when the error term distribution

is highly . Note the shape of the
plot.

(b) (Figure 3.9b) shows a normal probability plot when the error term distribution
is highly . Here, the pattern is

(c) (Figure 3.9c) shows a normal probability plot when the distribution of the

error tenus is but has ; in other words, the

distribution has higher probabilities in the tails than a normal distribution.

https://www.ucd.ie/ecomodel/Resources/QQplots WebVersion.html

FIGURE 3.9 Normal Probability Plots when Error Term Distribution Is Not Normal.

(a) Skewed Right (b) Skewed Left () Symmetrical with Heavy Tails

Residual
T
N
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T
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T
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6. Difficulties in Assessing Normality

(a) The analysis for model departures with respect to normality is, in many re-

spects, than that for other types of departures.

(b) It is usually a good strategy to investigate these other types of departures first,

before concerning oneself with the normality of the error terms.
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Omission of Important Predictor Variables

1. Residuals should also be plotted against variables omitted from the model that

might have important effects on the response.

2. One would like to study the relation between output (V) and age (X)
of worker in an assembling operation for a sample of employees. In this study,

the machines produced by two companies (A and B) are used in the assembling

operation.

FIGURE 3.10 (a) Both Machines

Residual Plots e

for Possible . .

Omission of = e %o w4 * . .‘
= 0 . S _se o g e

Iﬂlp(tl'taﬂt 'g 0 . .. m ry . e .. :

Predictor g . e

Variable— *

Productivity

Example. Age of Worker X

(b) Company A Machines

e
. .
- . ., e o o® * o « *
3 ° s s ° o
T O—=—7
wv) L]
&
Age of Worker X
(c) Company B Machines
e
_g 0 2 - ® 3 g
e . O
é o * . e ® .o n * e, * L .

Age of Worker

(a) (Figure 3.10a) no ground for suspecting the appropriateness of the linearity of

the regression function or the constancy of the error variance.

(b) (Figure 3.10b, 3.10c) The residuals for Company A machines tend to be posi-

tive: while those for Company B machines tend to be negative.
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(¢) Type of machine appears to have a definite effect on productivity, and output
predictions may turn out to be far superior when this variable is added to the

model.

(111-2) Regression Analysis (I) January 24, 2023



Chapter 3: Diagnostics and Remedial Measures Page 16/43

Some Final Comments!

1. Several types of departures may occur

2. Although graphic analysis of residuals is only an informal method of analysis, in

many cases it for examining the aptness of a model.

3. The basic approach to residual analysis explained here applies not only to sim-

ple linear regression but also to more and other types of
4. Model misspecification due to either or the of im-
portant predictor variables tends to be serious, leading to estimates of

the regression parameters and error variance.

5. of error variance tends to be less serious, leading to less efficient

estimates and invalid error variance estimates.

6. The presence of can be serious for smaller data sets when their influ-

ence is large.

7. The of error terms results in estimators that are unbiased

but whose variances are seriously

3.4 Overview of Tests Involving Residuals

1. Graphic analysis of residuals is inherently

2. Most statistical tests require independent observations. The residuals are

The dependencies become quite small for , so that one can usu-

ally then ignore them.

Tests for Randomness

1. A is frequently used to test for lack of randomness in the residuals

arranged in time order.

!Some will be discussed in other Chapters.
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2. . designed for lack of randomness in least squares residuals.
(Chapter 12).

Tests for Constancy of Variance

1. When a residual plot gives the impression that the variance may be increasing or
decreasing in a systematic manner related to X or E(Y), a simple test is based

on the between the absolute values of the residuals and the

corresponding values of the predictor variable.

2. Tests for constancy of the error variance: the test and the
test (Section 3.6.)

Tests for Outliers

1. A simple test for identifying an outlier observation: detail in (Chapter 10).

2. Many other tests to aid in evaluating outliers have been developed (Reference 3.1.)

Tests for Normality

1. (the chi-square test, the Kolmogorov-Smirnov test and

its modification, the Lilliefors test) can be employed for testing the normality of the

error terms by analyzing the residuals.

2. A simple test based on the of the residuals (Section
3.5.)

3.5 Correlation Test for Normality

1. A formal test for normality of the error terms can be conducted by calculating the co-

efficient of between the residuals e; and their

under normality.

2. A high value of the correlation coefficient is indicative of normality.
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3. (Table B.6) (Looney and Gulledge) (Ref. 3.2) contains (per-

centiles) for various sample sizes for the distribution of the coefficient of correlation

between the ordered residuals and their expected values under normality when the

error terms are normally distributed.

4. If the observed coefficient of correlation is as the tabled value,

for a given a level, one can conclude that the error terms are reasonably normally

distributed.

D. Toluca Company Example: the coefficient of correlation between the or-

dered residuals and their expected values under normality is . Controlling
the a risk at , we find from Table B.6 that the critical value for n = 25
is . Since the observed coefficient exceeds this level, we have support

for our earlier conclusion that the distribution of the error terms does not depart

substantially from a normal distribution.

© Normality test: https://en.wikipedia.org/wiki/Normality test.

3.6 Tests for Constancy of Error Variance

Brown-Forsythe Test

1. Assumption: the sample size needs to be large enough so that the dependencies

among the residuals can be ignored.

2. The Brown-Forsythe test is based on the of the residuals. The

larger the error variance, the larger the variability of the residuals will tend to be.

3. The Brown-Forsythe test then consists simply of the based
on test statistic (A.67)

to determine whether the for one group differs

significantly from the mean absolute deviation for the second group. Steps:

(a) Divide the data set into two groups, according to the , so that

one group consists of cases where the X level is comparatively and

the other group consists of cases where the X level is comparatively
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(b) If the error variance is either increasing or decreasing with X, the residuals in

one group will tend to be than those in the other group.

(¢) Equivalently, the of the residuals around their group

mean will tend to be larger for one group than for the other group.
(d) In order to make the test more , we utilize the absolute deviations

of the residuals around the for the group (Ref. 3.5).

4. Although the distribution of the absolute deviations of the residuals is usually

, it has been shown that the t* test statistic still follows approxi-

mately the when the variance of the error terms is

and the sample sizes of the two groups are not extremely small.

5. Notations: the ith residual for group 1 (2) by e;; (e;2), the sample sizes of the two

groups by n; and ns, the medians of the residuals in the two groups by é; and é,.

6. The Brown-Forsythe test uses the absolute deviations of the residuals around their

group , to be denoted by d;; and d;»:

and

7. The two-samplet test statistic (called the Brown-Forsythe test statistics t;5) be-

comes:

* J—
tBF -

where d; and ds are the sample means of the d;; and d;, respectively, and the pooled

variance 82 becomes:

8. If the error terms have constant variance and n; and ns are not extremely small, ¢},

follows approximately the distribution with degrees of freedom.

9. Large absolute values of ¢}, indicate that the error terms do not have constant

variance.
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€ QUESLION ..o (p117)

Use the Brown-Forsythe test for the Toluca Company example to determine whether
or not the error term variance varies with the level of X. (Note that since the X
levels are spread fairly uniformly, you can divide the 25 cases into two groups with
approximately equal X ranges. The first group consists of the 13 runs with lot sizes
from 20 to 70. The second group consists of the 12 runs with lot sizes from 80 to
120. (v = 0.05,t0.975.23 = 2.069)

sol:

TABLE ,3'3 GI’OUp 1
Calculations _ e o _
for Brown- m (2) 3) -(4)
Forsythe Test Lot Residual )
for Constancy i Run Size en dh (dh —d)?
2{“2_“‘“' 1 14 20 ~20.77 89 1,929.41
AL 2 2 30 —48.47 28.59 263.25
Tﬂl“m > .. . . e . ..
gx"“‘p“‘l"y 12 12 70 —60.28 40.40 19.49
ample. 13 25 70 10.72 30.60 202.07
Total 582.60 12,566.6
& =-19.88 d, =44.815
Group 2
0 @ ®3) @
Lot Residual
i Run Size ez d2 (da — d2)?
1 1 80 51,02 53.70 637.56
2 8 80 4.02 6.70 473.06
11 20 110 —34.09 31.41 8.76
12 7 120 55.21 57.89 866.71
Total 341.40 9,610.2

éz = —2.68 'dz = 28.450
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Breusch-Pagan Test*
3.7 F Test for Lack of Fit

Assumptions

1. F test for is a formal test for determining whether a specific type of

regression function adequately fits the data.

2. The lack of fit test assumes that the observations Y for given X are (1)

and (2) distributed, and that (3) the distributions of Y have the

3. Replications, Replicates: the lack of fit test requires observations
at one or more X levels. Repeat trials for the same level of the predictor variable,
of the type described, are called . The resulting observations are
called

4. Bank Example

(a) In an experiment involving 12 similar but scattered suburban branch offices

of a commercial bank, holders of checking accounts at the offices were offered
gifts for setting up money market accounts. Minimum initial deposits in the
new money market account were specified to qualify for the gift. The value of
the gift was directly proportional to the specified minimum deposit. Various
levels of minimum deposit and related gift values were used in the experiment
in order to ascertain the relation between the specified minimum deposit and
gift value, on the one hand, and number of accounts opened at the office, on
the other. Altogether, six levels of minimum deposit and proportional gift
value were used, with two of the branch offices assigned at random to each
level. One branch office had a fire during the period and was dropped from
the study. Table 3.4a contains the results, where X is the amount of minimum
deposit and Y is the number of new money market accounts that were opened

and qualified for the gift during the test period.
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TABLE 3.4
Data and (a) bata
Analysis of Size of Size of
Variance Minimum Number Minimum Number
Table—Bank Deposit of New Deposit of New
Example. Branch (dollars) Accounts Branch (dollars) Accounts
i X; Y: i Xi Yi
1 125 160 7 75 42
2 100 112 8 175 124
3 200 124 9 125 150
4 75 28 10 200 104
5 150 152 11 100 136
6 175 156
(b) ANOVA Table
Source of
Variation ss df MS
Regression 5,141.3 1 5,141.3
Error 14,741.6 9 1,638.0
Total 19,882.9 10

(b) A linear regression function was fitted:

~

Y = 50.72251 + 0.48670.X

(Table 3.4b): The analysis of variance table.

(c) (Figure 3.11) A scatter plot, together with the fitted regression line, indicates

that a linear regression function is

linear test approach to do a formal test.

TABLE 3.5
Data Arranged
by Replicate
Number and
Minimum
Deposit—Bank
Example.

(111-2) Regression Analysis (I)

FIGURE 3.11 g 175
Scatter Plot 5 S e *
and FiﬂEd <LE 125+ ¢ . .
ReglﬁSio“ 5 . .
Line—Bank £ ¥ =507 + .49X
S 751 = 50.7 + .
Example. P
Q [ ]
:E, . 1 1 )
z 50 100 150 200

Size of Minimum Deposit

Size of Minimum Deposit (dollars)

j=1 j=2 ji=3 j=4 ji=5 j=6

Replicate X; =75 X;=100 X3=125 X4=150 Xs=175 X; =200

i=1 28 112 160 152 156 124
i=2 42 136 150 124 104
Mean Y; 35 124 155 152 140 114

We use the general
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Notation

1. (Table 3.5) presents the same data but in an arrangement that recognizes the repli-
cates. We shall denote the different X levels in the study, whether or not replicated
observations are present, as X, -, X,.

2. There are six minimum deposit size levels in the study (¢ = 6), for five of which
there are two observations and for one there is a single observation. We shall let
X; = 75 (the smallest minimum deposit level), Xy = 100, - - -, X = 200.

3. Denote the number of replicates for the jth level of X as nj; for our example,
ny =mng =ngz =ns = ng = 2 and ny = 1. Thus, the total number of observations n
is given by: n.=>2"_ n;.

4. Denote the observed value of the response variable for the ith replicate for the jth
level of X by Y;;, where i =1,---,n;,5=1,---,c.

5. (Table 3.5), Y13 = 28,Y3; = 42,Y;s = 112, and so on. Denote the mean of the
Y observations at the level X = X, by Y;. Thus, Y; = (28 + 42)/2 = 35 and
Yy = 152/1 = 152.

Full model

1. The full model used for the lack of fit test makes the as the
simple linear regression model (2.1) except for assuming a linear regression relation,
the subject of the test.
where p; are parameters j = 1,---, ¢, ¢; are independent

2. Since the error terms have expectation zero, it follows that:

E(Yy;) =

Thus, the parameter p; (j =1,---,c) is the mean response when X = Xj.

3. The full model states that each response Y is made up of two components: the

when X = X; and a term.
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10.

. The difference between the two models is that in the full model (3.13) there are no

restrictions on the , whereas in the regression model (2.1) the mean

responses are linearly related to X (i.e., ).

The least squares or maximum likelihood estimators for the parameters ;:

The estimated expected value for observation Y;; is , and the error sum of

squares (also called the pure error sum of squares, SSPE) for the full model:

SSE(F) = = SSPE

Note that SSPFE is made up of the sums of squared deviations

At level X = Xj, this sum of squared deviations is:

These sums of squares are then added over all of the X levels (7 =1,---,¢).

For the bank example, we have:

SSPE = (28 — 35)% + (42 — 35)% + (112 — 124)® + - - - + (104 — 114)* = 1,148

Note that any X level with no replications makes to SSPE

because Y; = Yy, for j = 4.

The degrees of freedom associated with SSPFE can be obtained by recognizing that
the sum of squared deviations (3.17) at a given level of X is like an ordinary total
sum of squares based on n observations, which has degrees of freedom
associated with it. Here, there are n; observations when X = X;; hence the degrees

of freedom are

Just as SSPE is the sum of the sums of squares (3.17), so the number of degrees

of freedom associated with SSPFE is the sum of the component degrees of freedom:

dfp =
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Reduced Model

1. For testing the appropriateness of a linear regression relation, the alternatives are:

Hy
H,

Thus, Hy, postulates that j; in the full model (3.13) is linearly related to X

The reduced model under H therefore is:

2. Note that the reduced model is the ordinary simple linear regression model (2.1),

with the subscripts modified to recognize the existence of

3. We know that the estimated expected value for observation Y;; with regression
model (2.1) is the fitted value Y;;

Hence, the error sum of squares for the reduced model is the usual error sum of

squares SSE:

SSE(R) =

We also know that the degrees of freedom associated with SSE(R) are:

4. For the bank example, we have from Table 3.4b: SSE(R) = SSE =
14741.6, dfr =9

Test Statistic

1. The general linear test statistic (2.70):

F* =

here becomes:
F*
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2. The difference between the two error sums of squares is called the

(SSLF):

SSLF =

3. We can then express the test statistic as follows:

F* =

where MSLF denotes the lack of fit mean square and MSPE denotes the pure

€rror mean square.

4. We know that large values of F™* lead to conclusion H, in the general linear test.

Decision rule (2.71) here becomes:
If F* < Fli—ase—2,n—c), conclude Hy

It

5. For the bank example, the test statistic:

SSPE = 11480, n—c=11-6=5
SSE = 14741.6,

SSLF = 14741.6 —1,148.0=13,593.6, c¢—2=6—2=4
[ 13,593.6 | 1148.0  3,398.4
- 4 "5 92206

= 14.80

If the level of significance is to be a@ = 0.01, we require F(gg9.45 = 11.4. Since
F* =14.80 > 11.4, we conclude H,, that the regression function is not linear. The
P-value for the test is 0.006.

ANOVA Table

1. The error deviations in SSE are made up of a pure error component and a lack of

fit component:

Yy -V, =

Error deviation =

(111-2) Regression Analysis (I) January 24, 2023



Chapter 3: Diagnostics and Remedial Measures Page 27/43

2. (Figure 3.12) illustrates this partitioning for the case Y3 = 160, X3 = 125
in the bank example.

FIGURE 3.12 Y
[llustration of iy =160
Decomposition 160 - (pure error deviation) 5 = ¥;3 — Y34 [ s
of Exror 2 L =15
Deviation §
Yy — Yy— g . ) N
Bank z 130 (lack of fit deviation) 43 = ¥3 — ¥j3< | [ Y;3 ~ ¥43 = 48 (error deviation)
Example. zZ r

Hé /

@

-D -,

g ~

Z Y13=112

100 -

¥ = 50.72251 + .48670X
L 1 1

75 100 125 150 X
Size of Minimum Deposit (dollars)

g

(=3

3. When (3.28) is squared and summed over all observations, we obtain (3.27) since

the cross-product sum equals zero:

DD V=Y =

SSE = SSPE+ SSLF

4. Why SSLF measures lack of fit? If the linear regression function is appropriate,

then the will be near the calculated from the

estimated linear regression function and SSSLF will be

5. On the other hand, if the linear regression function is not appropriate, the means
Y; will not be near the fitted values calculated from the estimated linear regression

function and SSLF will be large.

6. SSLF has ¢ — 2 degrees of freedom: there are means Yj in the sum of squares,
and degrees of freedom are lost in estimating the parameters 5y and [y,

of the linear regression function to obtain the fitted values f/] :

7. (Table 3.6) contains the ANOVA decomposition for the bank example.
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TABLE 3.6 R
General (a) General
ANOVA Table ‘Source of . :
for Testing Variation ss df Ms
Lack 0[ Ht 0f - SSR
Simple Linear Regression SSR=Y_S(¥i; — V)2 1 MSR = —=
Regression ' SSE
Function and Error SSE= (Vi — ¥ij)? n-2 MSE = ——
ANOVA Z Z ) i U] n—2
Table—Bank : . 7. 2 . _ SSLF
Example. Lack of fit SSLF =333 2(V; — ¥y c-2 MSLF = —=
- . SSPE
Pure error SSPE=Y3 (Yy — V) n—c¢ MSPE = Fhaen
Total SSTO=Y 3(¥;; ~ V)2 n—-1
(b) Bank Example
Source of ‘
Variation ss df MS
Regression 51413 1 5,141.3
Error 14,741.6 9 1,638.0
Lack of fit 13,593.6 4 3,398.4
Pure error 1,148.0 5 229.6
Total 19,882.9 10
Comments

1. Not all levels of X need have repeat observations for the F' test for lack of fit to be

applicable. Repeat observations at only one or some levels of X are

2. Suppose that prior to any analysis of the appropriateness of the model, we had
fitted a linear regression model and wished to test whether or not 5 = 0. For the
bank example (Table 3Ab), test statistic (2.60) would be:

MSR  5141.3

MSE  1638.0
For o = .10, Flg.90;1,9) = 3.36, and we would , that 1 = 0 or that
there is between minimum deposit size (and value of gift)

and number of new accounts. A conclusion that there is no relation between these
variables would be improper, however. Such an inference requires that regression

model (2.1) be . Here, there is a definite relationship, but the

regression function is not linear. This illustrates the importance of always examining

the appropriateness of a model before any inferences are drawn.
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3. The alternative H, in (3.19) includes all regression functions other than a
one. For instance, it includes a quadratic regression function or a logarithmic one.

If H, is concluded, a study of can be helpful in identifying an appro-

priate function.

4. When no replications are present in a data set, an approximate test for lack of fit
can be conducted if there are some cases at adjacent X levels for which the mean
responses are quite close to each other. Such adjacent cases are grouped together

and treated as , and the test for lack of fit is then carried out

using these groupings of adjacent cases. (Reference 3.8.)

3.8 Overview of Remedial Measures

1. If the simple linear regression model (2.1) is not appropriate for a data set, there

are two basic choices:

(a) Abandon regression model (2.1) and develop and use a

(b) Employ some on the data so that regression model (2.1)

is appropriate for the transformed data.

Nonlinearity of Regression Function

Section 3.9, Section 3.10. Chapter 7.

Nonconstancy of Error Variance

Section 3.9, Chapter 11.

Nonindependence of Error Terms

Chapter 12.

Nonnormality of Error Terms

Section 3.9.
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Omission of Important Predictor Variables

Chapter 6.

Outlying Observations

Chapter 11.

3.9 Transformations

Simple transformations of either the response variable or the predictor variable
, or of , are often sufficient to make the simple linear regression model

appropriate for the transformed data.

Transformations for Nonlinear Relation Only

1. We first consider transformations for linearizing a nonlinear regression relation when

the distribution of the is reasonably close to a distri-

bution and the error terms have approximately

2. In this situation, transformations on should be attempted. Transformation
on Y may materially change the shape of the distribution of the - error terms
from the normal distribution and may also lead to substantially differing error term

variances.

FIGURE 3.13 Prototype Regression Pattern Transformations of X
Prototype
Nonlinear
Regression
Patterns with
Constant Error
Variance and
Simple Trans-
formations

of X. (b

(a) X'=log;p X X'=X

X=X X'=exp(X)

(©) X'=1X X =exp(—X)

AN
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3. (Figure 3.13) some prototype nonlinear regression relations with constant error vari-
ance and also presents some simple transformations on X that may be helpful to

the regression relationship without affecting the

4. A battery of simulated sales

(a) Data from an experiment on the effect of number of days of training received
(X) on performance (V') in a battery of simulated sales situations are presented

in Table 3.7, columns 1 and 2, for the 10 participants in the study.

TABLE 3.7

m ) 3)
DssnkSqnare Sales Days of Performance
Root Transfor- = 3 S
. Trainee Training Score
mation of X to i X Y, X = V&
Linearize ; k ! LI 2
Regression 1 .5 42.5 70711
Relation— 2 3 50.6 70711
Sales Training 3 1.0 68.5 1.00000
Exaniple. 4 1.0 80.7 1.00000:
5 1.5 89.0 1.22474
6 1.5 99.6 1.22474
7 2.0 105.3 1.41421
8 2.0 111.8 1.41421
9 2.5 112.3 1.58114
10 2.5 125.7 1.58114

(b) (Figure 3.14a) Clearly the regression relation appears to be curvilinear, so the
simple linear regression model (2.1) does not seem to be appropriate. Since the

at the different X levels appears to be fairly , we

shall consider a transformation on X. Based on Figure 3.13a, consider initially

the square root transformation
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FIGURE 3.14 Scatter Plots and Residual Plots—Sales Training Example.

(a) Scatter Plot (b) Scatter Plot against X
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(c) Residual Plot against VX (d) Normal Probability Plot
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(c) (Figure 3.14b), the same data are plotted with the predictor variable trans-
formed to X’ = v/ X. Note that the scatter plot now shows a reasonably
relation. The variability of the scatter at the different X levels is

the same as before, since we did not make a transformation on

(d) To examine further whether the simple linear regression model (2.1) is appro-

priate now, we fit it to the transformed X data:

(e) (Figure 3.14c) the plot of residuals against X' shows of lack

of fit or of strongly unequal error variances.
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(f) (Figure 3.14d) a normal probability plot of the residuals. No strong indications

of substantial departures from . This conclusion is supported

by the between the ordered residuals and their

expected values under normality, 0.979.

(g) For a = 0.01, Table B.6 shows that the critical value is 0.879, so the observed
coefficient is substantially larger and supports the reasonableness of normal
error terms. Thus, the simple linear regression model (2.1) appears to be

appropriate here for the transformed data.

(h) The fitted regression function in the can easily be

obtained, if desired:

Y =

Transformations for Nonnormality and Unequal Error Variances

1. Unequal error variances and nonnormality of the error terms frequently appear
together. To remedy these departures from the simple linear regression model (2.1),

we need a , since the and of the

distributions of Y need to be changed.

2. A simultaneous may be needed to obtain or maintain a

linear regression relation.

3. (Figure 3.15) Frequently, the nonnormality and unequal variances departures from

regression model (2.1) take the form of and

of the distributions of the error terms as the mean response E(Y') increases.

FIGURE 3.15 Prototype Regression Pattern o SR
Prototype L A——— —
Regression
Patterns with
Unequal Error
Variances and
Simple Trans-
formations
of Y.
@ (b) ©
Transformations on ¥

Yy =Y

Y = logyg ¥

Y'=1/Y

Note: A simultaneous transformation on X may also be helpful or necessary.

(111-2) Regression Analysis (I) January 24, 2023



Chapter 3: Diagnostics and Remedial Measures Page 34/43

4. and

most effective transformations.

should be prepared to determine the

TABLE 3.8

m 7)) 3)
e Of. g Child Age Plasma Level
Logarithmic P X, Y Y =1 Y
Transforma- J y ! i =100y ¥i
tion of Y to i 0 (newbom) 13.44 1.1284
Linearize 2 0 (newbom) 12.84 1.1086
Regression 3 0  (newborn) 11.91 1.0759
Relation and 4 0 (newborn) 20.09 1.3030
Stabilize Error 5 0 (newborn) 15.60 1.1931
Variance— 6 1.0 10.11 1.0048
Plasma Levels 7 1.0 11.38 1.0561
mamPIE- “ra raw P e
19 3.0 6.90 .8388.
20 3.0 6.77 .8306
21 4.0 4.86 .6866
22 4.0 5.10 7076
23 4.0 5.67 7536
24 4.0 5.75 7597
25 . 4.0 6.23 7945

D. Plasma Level Example

(a) (Table 3.8) Data on age (X) and plasma ([M2R) level of a polyamine (Z7CHZ)
(Y) for a portion of the 25 healthy children in a study.

(b) (Figure 3.16a) a scatter plot shows the distinct regression

relationship, as well as the greater variability for younger children than for

older ones.

(c) (Figure 3.16b) the scatter plot of the logarithmic transformation

The transformation not only has led to a reasonably linear regression relation,

but the variability at the different levels of X also has become reasonably
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FIGURE 3.16 Scatter Plots and Residual Plots—Plasma Levels Example.

(a) Scatter Plot (b) Scatter Plot with Y' = logyg Y
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(d) To further examine the reasonableness of the transformation Y’ = log,, Y, we
fitted the simple linear regression model (2.1) to the transformed Y data and

obtained:

(e) (Figure 3.16¢, d) the evidence supports the appropriateness of regression model
(2.1) for the transformed Y data: (i) A plot of the residuals against X, and

a normal probability plot of the residuals. (ii) The coefficient of correlation
between the ordered residuals and their expected values under normality is
(ili) For a = 0.05, Table B.6 indicates that the critical value is

so that the observed coefficient supports the assumption of normal-

ity of the error terms.

(f) NOTE: When Y is negative, the logarithmic transformation to shift the origin

in Y and make all Y observations positive would be

I

where k is an appropriately chosen constant.
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(g) NOTE: When unequal error variances are present but the regression relation
is linear, a transformation on Y may not be sufficient while such a transfor-
mation may the error variance, it will also change the linear

relationship to a one. A transformation on X may therefore

also be required.

Box-Cox Transformations

1. The Box-Cox procedure (Ref. 3.9) automatically identifies a transformation from

the family of power transformations on Y. The family of

is of the form:

where A is a parameter to be determined from the data.

2. Note that this family encompasses the following simple transformations:

A=2 Y =Y?
A=05 Y =VY
A=0 (by definition)

A=-05 Y'=

5

A=—1 Y ==
0 Y

@ Power transform (Box-Cox transformation) - Wikipedia:

https://en.wikipedia.org/wiki/Power_ transform.

3. The normal error regression model with the response variable a member of the

family of power transformations becomes:
Y =B+ BiXi+ e

Note that above regression model includes an additional parameter, A, which needs

to be estimated.
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4. The Box-Cox procedure uses the method of to estimate

), as well as the other parameters 8y, 31, and o2.
5. A simple procedure for obtaining \:

(a) search in a range of potential A values; for example, A = =2, A = —1.75,--- A\ =

1.75, X = 2. For each \ value, the Y;* observations are first

so that the magnitude of the error sum of squares does not depend on the value
of \.

(b) Once the standardized observations have been obtained for a given A value,

they are regressed on the predictor variable X - and

is obtained.

(c) It can be shown that the maximum likelihood estimate A is that value of A for

which SSE is a minimum.

6. After a transformation has been tentatively selected, residual plots and other anal-
yses described earlier need to be employed to ascertain that the simple linear re-

gression model (2.1) is appropriate for the transformed data.

3.10 Exploration of Shape of Regression Function®

lowess Method*

Use of Smoothed Curves to Confirm Fitted Regression Function®

3.11 Case Example — Plutonium Measurement

1. Background Description: Some environmental cleanup work requires that nuclear

materials, such as plutonium 238 (#5-238), be located and completely removed from
a restoration site. When plutonium has become mixed with other materials in very
small amounts, detecting its presence can be a difficult task. Even very small
amounts can be traced, however, because plutonium emits subatomic particles —
alpha particles — that can be detected. Devices that are used to detect plutonium
record the intensity of alpha particle strikes in counts per second (#/sec). The

regression relationship between alpha counts per second (the response variable) and
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plutonium activity (the explanatory variable) is then used to estimate the activity

of plutonium in the material under study.

2. Data Description: (Table 3.10) In a study to establish the regression relationship

for a particular measurement device, four plutonium standards were used. These
standards are aluminum/plutonium rods containing a fixed, known level of pluto-
nium activity. The levels of plutonium activity in the four standards were 0.0, 5.0,
10.0, and 20.0 picocuries (K 5EfEfe - BIERHFAIEN) per gram (pCi/g). Each
standard was exposed to the detection device from 4 to 10 times, and the rate of

alpha strikes, measured as counts per second, was observed for each replication.

;‘:SI?LE 3.10 Plutonium Alpha Count
ic Data— .
Pluton Case Activity Rate
R - (pCi/g) (#/seb)
Measurement 4 L :
Example, 1 20 150
2 0 .004
3 10 069
22 0 .002
23 5 049
24 0 .106

3. Goal: The task here is to estimate the regression relationship between alpha counts

per second (Y) and plutonium activity (X).

4. Assumption Before Doing Analysis: the level of alpha counts increases with pluto-

nium activity, but the exact nature of the relationship is generally unknown.

5. Exploratory Data Analysis, FDA:

(a) Scatter plot: (Figure 3.20a) The strike rate tends to increase with the activity
level of plutonium. Notice also that nonzero strike rates are recorded for the
standard containing no plutonium. This results from background radiation

and indicates that a regression model with an intercept term is required here.
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FIGURE 3.20 (2) Scatter Plot (b) Lowess Smoothed Curve
SAS-TMP 015 . 015 .
Scatter Plot
and Lowess * *
Smuotlied 0.12 . . 012
Curve—
Plutonium g HOR T . g 009F
Measurement ?;3‘ . 5.;‘
Example. 0.06 |- . 0.06 |-
e 3
§
0.03 | . 0.03 |
0.00 j L L | 0.00
4] 10 20 30 0 10 20
pCi/g pCi/g

(b) Investigate Relationship: The regression relationship may be linear or slightly

curvilinear in the range of the plutonium activity levels included in the study.

(¢) Outlier Detection: An examination of laboratory records revealed that the ex-

perimental conditions were not properly maintained for the last case, and it

was therefore decided that . A linear regres-

sion function was fitted next, based on the remaining 23 cases.

6. Parameters Estimation and ANOVA: (Figure 3.21a) the slope of the regression line

is not zero (F* = 228.9984, P-value= 0.0000) so that a regression

FIGURE 3.21
Measurement Example.

Term
Intercept
Plutonium

Source
Model
Error

C Total

Source

Lack of Fit
Pure Error
Total Error

(111-2) Regression Analysis (I)

Estimate
0.0070331
0.005537

DF

1
21
22

DF

2
19
2

(2) Regression Output

Std Error
0.0036
0.00037

Sum of Squares
0.03619042
0.00331880
0.03950922

Sum of Squares
0.00016811
0.00315069
0.00331880

t Ratio
1.95
15.13

Mean Square
0.036190
0.000158

Mean Square
0.000084
0.000166

Probs|t|
0.0641
0.0000

F Ratio
228.9984
Prob>F
0.0000

F Ratio
0.5069
Prob>F
0.6103

SAS-JMP Regression Output and Diagnostic Plots for Untransformed Data—Plutonium
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(b) ©
Residual Plot Normal Probability Plot
0.04 1 0.04
0.03F * 0.03 °
0021 0.02 (
L ] L . o
_ oo} _ 001f
s ™ . s 5 oo"'
2 000+ = 2 000f o
& 3 * . 2 P o
—0.01}f . . -0.01f i*
L ]
-0.02} -0.02}
-0.03 -0.03
-0.04 ! I I ] = 3 —0.04 1 1 ! 1 ]
0.00 002 005 007 010 012 -0.03 -0.02-0.01 0.00 0.01 0.02 0.03
Fitted Expected

7. Model Diagnostic:

(a) Residuals Plot: (Figure 3.21b) the flared, megaphone shape of the residual

plot shows that the error variance appears to be increasing with the level of

plutonium activity.

(b) The Normal Probability plot: (Figure 3.21¢) suggests non-normality

but the nonlinearity of the plot is likely to be related (at least in part) to the

unequal error variances.

(¢) Breusch-Pagan Test: the existence of nonconstant variance is confirmed by the

Breusch-Pagan Test statistic:

XBp = 23.29 > X{o95.1) = 3.84

8. Re-analysis After Data Transformation on Y :

(a) Box-Cox transformation: using the standardized variable, the maximum like-

lihood estimate of A to be A = 0.65. The Box-Cox procedure supports the use
(i.e., use of A =0.5).

of the

(b) Parameters Estimation and ANOVA: (Figure 3.22a) The results of fitting a
linear regression function when the response variable is Y” = /Y. The Lack
of Fit Test statistic is /™" = 10.1364 with P-value = 0.0010.
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FIGURE 3.22 SAS-JMP Regression Qutput and Diagnostic Plots for Transformed Response
Variable—Plutonium Measurement Example.

(a) Regression Qutput

Term Estimate std Error tRatio  Prob>|t|
Intercept 0.0947596 0.00957 9.91 0.0000
Plutonium  0.0133648 0.00097 13.74 0.0000
Source DF Sum of Squares Mean Square F Ratio
Model 1 0.21084655 0.210847 188.7960
Error 21 0.02345271 0.001117 Prob>F
C Total 22 0.23429926 0.0000
Source DF  Sum of Squares Mean Square F Ratio
Lack of Fit 2 0.01210640 0.006053 10.1364
Pure Error 19 0.01134631 0.000597 Prob>F
Total Error 21 0.02345271 0.0010
(b) ©
Residual Plot Normal Probability Plot
0.07 - 0.07
[ ] L]
0.05 - 0.05+
. .
L .
0.02} * . 0.02} o
§ . L] ’,_g “.
T 000 - T o000t vee
& . = .
L 1]
—0.02 —-0.02
L] 'S4l
—0.05 -0.05 - .
-0,07 o i S ~0.07 Ly 1 1 e ot L ]
0.1 0.2 0.3 0.4 -0,07 —0.05 —0.02 0.00 0.02 0.05 0.07
Fitted Expected

(c) Diagnostic Plots: (Figure 3.22b, ¢) the residual plot shows that the error vari-

ance appears to be more , it also suggests the Y’ is nonlinearly
related to X. The points in the normal probability plot fall roughly on a

line.

9. Re-analysis Again After Transformation on X

(a) Parameters Estimation and ANOVA: (Figure 3.23a) The Lack of Fit Test
(F* = 1.2868 with P-value = 0.2992) supports the linearity of the regression

relating

to
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FIGURE 3.23 SAS-JMP Regression Output and Diagnostic Plots for Transformed Response and Predictor
Variables—Plutonium Measurement Example.

(a) Regression Output

Term Estimate std Error tRatio  Prob>|t|
Intercept 0.0730056 0.00783 9.32 0.0000
Sqrt Plutonium ~ 0.0573055 0.00302 19.00 0.0000
Source DF Sum of Squares Mean Square F Ratio
Model 1 0.22141612 0.221416  360.9166
Error 21 0.01288314 0.000613 Prob>F
C Total 22 0.23429926 0.0000
Source DF Sum of Squares Mean Square F Ratio
Lack of Fit 2 0.00153683 0.000768 1.2868
Pure Error 19 0.01134631 0.000597 Prob>F
Total Error 21 0.01288314 0.2992

(b) Diagnostic Plots (Figure 3.23b, c) the residual plot shows that the square root

transformation of the predictor variable has eliminated the lack of fit. It also
suggests that some nonconstancy of the error variance may still remain; but if

so, it does not appear to be . The normal probability plot of

the residuals in Figure 3.23c¢ appears to be satisfactory.

() (©
Residual Plot Normal Probability Plot
0.06 - . 0.06 .
0.04 - 0.04 -
» [ ] . [ ]
0.02f * . 0.02 o
s s © o
2 0.00f— . 2 o000} =
32 . . . & P
~0.02} —0.02}
L ] L] [ ] (1 1]
~0.04} * . ~004F o °
—0.06 1 1 I 1 J —0.06 L I L ] 1 J
005 010 015 0.20 025 030 0.35 ~0.07 —0.05-0.02 0.00 0.02 0.05 0.07
Fitted Expected
(¢) Diagnostic Tests: the (r = 0.986) supports the assump-

tion of normally distributed error terms (the interpolated critical value in Ta-
ble B.6 for a = 0.05 and n = 23 is 0.9555). The

(X% p = 3.85 with a P-value = 0.05) supports the conclusion from the residual

plot that the nonconstancy of the error variance is not substantial.

(d) Additional Results: (Figure 3.23d) the scatter plot of X and Y with the con-
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fidence band for the fitted regression line:

. The

regression line has been estimated fairly precisely. The lowess curve falls en-

tirely within the confidence band, supporting the reasonableness of a linear

regression relation between Y’ and X'.

(d)
Confidence Band for Regression
Line and Lowess Curve

® TA Class

-

o Problems: 3.4, 3.9, 3.13, 3.15, 3.17
« Exercises: 3.20, 3.21

e Projects: 3.25

N
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Kutner's Applied Linear Statistical Models (5/E)

Chapter 5: Matrix Approach to Simple Linear Regression Analysis I

Thursday 09:10-12:00, EEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University

http://www.hmwu.idv.tw

Overview

1. The matrix approach is practically a necessity in regression analysis,
since it permits extensive systems of equations and large arrays of data to be denoted

compactly and operated upon efficiently.

2. This chapter gives a brief introduction to

3. Then we apply matrix methods to the simple linear regression model.

5.1 Matrices

Definition of Matrix

1. A matrix is a array of elements arranged in rows and columns.
2. A matrix with and will be represented either in full:
ai; Qi -+ Ay 0 Qi
Q21 Qg2 - Q25 -+ A
A=
aip Q2 - Qg Qe
| Qry Qa2 cc Qpj c Qpe |
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or in abbreviated form:
A= 7i:17"'7r;j:17"'7c

or simply by a boldface symbol, such as A.

Square Matrix

1. A matrix is said to be square if the number of rows the number of
columns.
Vector
1. A matrix containing only one column is called a vector or simply a
vector. ~ _
C1
Co
C=| ¢
Cy
L C5 .

the vector C is a

2. A matrix containing only one row is called a :e.g., B'=[15 25 50].
We use the prime symbol ( ) for row vectors. Note that the row vector
B'is a matrix.
Transpose
1. The transpose of a matrix A is another matrix, denoted by , that is obtained

by interchanging corresponding columns and rows of the matrix A.

then the transpose A’ is:

A=
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2. The transpose of a column vector is a row vector, and vice versa. This is the reason
why we used the symbol B’ earlier to identify a row vector, since it may be thought

of as the transpose of a column vector B. In general, we have:

A = a],

Equality of Matrices

1. Two matrices A and B are said to be equal if they have the same dimension and if

all corresponding

Regression Examples

1. In regression analysis, one basic matrix is the vector Y, consisting of the n obser-

vations on response variable

2. Another basic matrix in regression analysis is the X matrix, which is defined as

follows for simple linear regression analysis:

The matrix X consists of a column of 1s and a column containing the n observations

on the predictor variable X. The X matrix is often referred to as the design matrix.

5.2 Matrix Addition and Subtraction

1. Adding or subtracting two matrices requires that they have the same dimension.
The sum, or difference, of two matrices is another matrix whose elements each

consist of the sum, or difference, of the corresponding elements of the two matrices.
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if Ar><c = [CLU], Br><c = [bij]u then A+ B =

3. The regression model: Y; = E(Y;) +¢&;, i = 1,---,n can be written in matrix

notation:

4. The observations vector Y equals the sum of two vectors, a vector containing the

expected values and another containing the error terms.

Y; E(Y)) €1 EY1) + e
}/2 _ E(}@) " E9 _ E(ng) + E9
Y, E(Y,) En E(Y,) +en

5.3 Matrix Multiplication

Multiplication of a Matrix by a Scalar

1. A scalar is an ordinary number or a symbol representing a number. In multiplication

of a matrix by a scalar, every element of the matrix is multiplied by the scalar.

2. If A = [a;;] and k is the scalar, then

kA = Ak =

Multiplication of a Matrix by a Matrix

1. In general, the product AB is defined only when the number of columns in A

equals the number of rows in B so that there will be corresponding terms in the

2. Note that the dimension of the product AB is given by the number of rows in A
and the number of columns in B. Note also that in the second case the product BA
would not be defined since the number of columns in B is not equal to the number

of rows in A.
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3. In general, if A = [a;] has dimension r X ¢ and B = [by;] has dimension ¢ x s, the
product AB is a matrix of dimension r x s whose element in the ith row and jth
column is:

AB =

Regression Examples

1. A product frequently needed is Y'Y, where Y is the vector of observations on the

response variable

Y
Y,
Y’Y:[YIYZ~~YH] ' = =
Y,
2. X’X is a 2 X 2 matrix:
_1 Xl_
X% — 1 1 ... 1 1 X, _
X X X, o
1 X,
3. XY is a 2 x 1 matrix:
_Yl_
1 1 - 1 Y-
X'Y — S
X Xy - X, :
Y,

5.4 Special Types of Matrices

Certain special types of matrices arise regularly in regression analysis. We consider the

most important of these.

Symmetric Matrix

1. If , A is said to be symmetric.
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2. A symmetric matrix necessarily is
3. Symmetric matrices arise typically in regression analysis when we premultiply a

matrix, say, X, by its transpose, X" The resulting matrix, , is symmetric.

Diagonal Matrix

1. A diagonal matrix is a square matrix whose elements are all

2. We will often not show all zeros for a diagonal matrix, presenting it in the form:

3. Identity Matrix The identity matrix or matrix is denoted by It

is a diagonal matrix whose elements on the main diagonal are all 1s.

4. Premultiplying or postmultlying any r x r matrix A by the r x r identity matrix I

leaves A unchanged.

Al =
5. A scalar matrix is a diagonal matrix whose elements are the
. A scalar matrix can be expressed as , where k is the scalar.

6. Multiplying an r» X r matrix A by the r x r scalar matrix kI is equivalent to multi-

plying A by the scalar k.

Vector and Matrix with All Elements Unity

1. A column vector with all elements 1 will be denoted by and a square matrix

with all elements 1 will be denoted by
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2. Note that for an n x 1 vector 1 we obtain:

1
1
11=[11 1] =
1
and -
1
1 1
1
mw=| |[[11---1=]": -
' 1 ... 1
1

Zero Vector

1. A zero vector is a vector containing only zeros. The zero column vector will be

denoted by .

5.5 Linear Dependence and Rank of Matrix

Linear Dependence

1. Consider the following matrix:

1 2 5 1
A=12 2 10 6
34 15 1

We view A as being made up of four column vectors. Note that the third column

vector is a multiple of the first column vector.

5 1
10 | =5
15 3
We say that the columns of A are . They contain

information, since one column can be obtained as a linear combination of the others.
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2. We define the set of ¢ column vectors Cq,---,C, in an r X ¢ matrix to be linearly

dependent if one vector can be expressed as a of the others.

If no vector in the set can be so expressed, we define the set of vectors to be

3. When c scalars kq, - - -, k., not all zero, can be found such that:
klcl+k202+"‘+kCCC:0

where 0 denotes the zero column vector, the ¢ column vectors are

If the only set of scalars for which the equality holds is k; = 0,---, k. = 0, the set

of ¢ column vectors is

4. For our example, k1 = 5,ky =0,k3 = —1, ky = 0 leads to:

1 2 5 1 0
o012 | +0{ 2| —-1]10 [ +0|6|=
4 15 1 0

Hence, the column vectors are linearly dependent. Note that some of the k; equal

zero here. For linear dependence, it is only required that not all k; be zero.

Rank of Matrix

1. The rank of a matrix is defined to be the of linearly inde-
pendent in the matrix.
2. The rank of a matrix is and can equivalently be defined as the maximum

number of linearly independent rows.

3. It follows that the rank of an r x ¢ matrix cannot exceed , the minimum

of the two values r and c.

4. When a matrix is the product of two matrices, its rank cannot exceed the smaller
of the two ranks for the matrices being multiplied. Thus, if C = AB, the rank of C

cannot exceed
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5.6 Inverse of a Matrix

1. In matrix algebra, the inverse of a matrix A is another matrix, denoted by ,
such that

where I is the identity matrix.

Finding the Inverse

1. An inverse of a square r X r matrix exists if the of the matrix is

Such a matrix is said to be nonsingular or of full rank.

2. An rxr matrix with rank less than r is said to be or

and does not have an inverse. The inverse of an r x r matrix of full rank also has

rank 7.

3. Finding the inverse of a matrix can often require a large amount of computing. We
shall take the approach that the inverse of a 2 X 2 matrix and a 3 x 3 matrix can be
calculated by hand. For any larger matrix, one ordinarily uses a computer to find

the inverse.

4. If
b
A=|"
c d
then
-1
Al a b _
c d
where , D is called the of the matrix A.
5. If A were singular, its determinant would equal and no inverse of A would
exist.

Regression Example

1. The principal inverse matrix encountered in regression analysis is the inverse of the

matrix X'X .
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2 QUESLION oo (p191)

Find the inverse of the matrix X’'X:

Xi
X/X — n Z ]

X X7

sol:

Uses of Inverse Matrix

1. In matrix algebra, if we have an equation:
AY =C.

We correspondingly premultiply both sides by A~!, assuming A has an inverse

we obtain the solution:

5.7 Some Basic Results for Matrices

We list here, without proof, some basic results for matrices which we will utilize in later

work.

A+B=B+A
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(A+B)+C=A+(B+C)
(AB)C = A(BC)
C(A+B)=CA +CB
k(A +B)=kA + kB
(A) = A
(A+B) =A"+B

(AB) =

(ABC) =
(AB)™' =

(ABC) ™! =

(A=A
(A/)—l —
5.8 Random Vectors and Matrices

Expectation of Random Vector or Matrix

1. A random vector or a random matrix contains elements that are

Thus, the observations vector Y in (5.4) is a random vector since the Y; elements

are random variables.

2. The expected value of Y is a vector, denoted by E(Y), that is defined as follows:

E(Y) = i=1,--.n.

3. For the error terms in regression model, we have
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Variance-Covariance Matrix of Random Vector

1. The variance-covariance matrix of Y, denoted by o*(Y):

oY) =
[ M) (0 Y) - oA(VLYL) |
= | *(Ya, Y1) oY) o0 0*(Ya,Y))
0-2(YnaYi) 02(Yn7}/2) 02(Yn7Yn)
2. Note that the are on the main diagonal, and the

is found in the 7th row and jth column of the matrix.

3. The error terms in regression model have constant variance:

o?(e) =

Some Basic Results

1. Frequently, we shall encounter a random vector W that is obtained by premulti-
plying the random vector Y by a constant matrix A (a matrix whose elements are

fixed): W = AY. Some basic results for this case are:

E(W) = E(AY)=

(W) = o*(AY)= ,

where 0(Y) is the variance-covariance matrix of Y.
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2 QUESLION oo (p42)

Suppose that a random vector W that is obtained by premultiplying the random
vector Y by a constant matrix A, that is W = AY. Find the expected value and

the variance-covariance matrix of W.

sol:

Multivariate Normal Distribution

1. The density function of the multivariate normal distribution can now be stated as

follows:
f(Y) = :
where Y containing an observation on each of the p Y variables
_ v, -
y-|
Y,
2. The mean vector E(Y), denoted by , contains the expected values for each
of the p Y variables: i i
M1
M2
n=1{ .
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3. The variance-covariance matrix 02(Y) is denoted by : and contains as always

the variances and covariances of the p Y variables:

2
01 O12 " O1p
0’21 0'2 DR 0’2
2 P
Y = ]
0' O' DR 0'2
| “pl Up2 P

o2 denotes the variance of Y7, o;; denotes the covariance of Y; and Y;.

4. The multivariate normal density function has properties that correspond to the ones

described for the normal distribution.

5. For instance, if Y;, - - -, Y, are jointly normally distributed (i.e., they follow the mul-
tivariate normal distribution), the marginal probability distribution of each variable

Y}, is normal, with mean pu; and standard deviation oy.

5.9 Simple Linear Regression Model in Matrix Terms
1. The normal error regression model (2.1):

Yi=08+5Xi+e, i=1--,n

2. The normal error regression model in matrix terms:

where

g is a vector of independent normal random variables with E(g) = 0 and 0?(g) = 0?1

(111-2) Regression Analysis (T) January 24, 2023



Chapter 5: Matrix Approach to Simple Linear Regression Analysis Page 15/21

5.10 Least Squares Estimation of Regression Param-

eters

Normal Equations

€ QUESLION ..o (p200)

Express the normal equations (1.9),

nby+ b Y X; = > Y
boY Xi+tb» X7 = > X,

in the matrix form
X'Xb =XY

where b is the vector of the least squares regression coefficients:

b
b2><1: [b?]

sol:
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€ QUESLION ..o (p201)
Derive the normal equations by the method of least squares in matrix notation.

sol:

Estimated Regression Coefficients

1. Obtain the estimated regression coefficients from the normal equations (5.59) by

matrix methods, We premultiply both sides by

We then find, since (X’X)"!X'X =T and Ib = b,

b:
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€ QUESLION ..o (p200)

Use matrix methods to obtain the estimated regression coefficients for the Toluca

Company example.

sol:

5.11 Fitted Values and Residuals

Fitted Values

1. Let the vector of the fitted values Y; be denoted by Y, then

Y —
_371_ —1 Xl— _bo+b1X1_
Y; B 1 Xy bo | by + b1.X>

: by :
YTL 1 Xn bO + len

2. Hat Matrix We can express the matrix result for Y as follows by using the expres-
sion for b in (5.60):
Y =
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or, equivalently:

where
Hn xn —

3. The fitted values Y; can be expressed as linear combinations of the response variable

observations Y;, with the coefficients being elements of the matrix H.

4. The H matrix involves only the observations on the predictor variable X. The square
n x n matrix H is called the Hat matrix. It plays an important role in diagnostics
for regression analysis (Chapter 10) when we consider whether regression results are

unduly influenced by one or a few observations.

5. The matrix H is symmetric and has the special property (called ):
In general, a matrix M is said to be if MM = M.
Residuals

1. Let the vector of the residuals ¢; = Y, — f/; be denoted by e:

€nx1 =

2. Variance-Covariance Matrix of Residuals. The residuals e;, like the fitted val-
ues SA/Z-, can be expressed as linear combinations of the response variable observations
Y; , using the result in (5.73) for Y:

We thus have the important result:

e —

where H is the hat matrix defined in (5.53a). The matrix I — H, like the matrix H,

is symmetric and idempotent.
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3. The variance-covariance matrix of the vector of residuals e involves the matrix I—H:

and is estimated by:

2 QUESLION ..o (p204)
Show that the variance-covariance matrix of e is o%(e) = o%(I — H).

sol:

5.12 Analysis of Variance Results

Sums of Squares

2 QUESLION ...\t (p204)

Express the sums of squares, SSTO, SSE and SSR in matrix notation.

sol:
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Sums of Squares as Quadratic Forms

1. In general, a quadratic form is defined as:

,  where a;; = aj;.

2. A is a symmetric n X n matrix and is called the matrix of the quadratic form.

3. The ANOVA sums of squares SSTO, SSE, and SSR are all

as can be seen by reexpressing b’X’.

2 QUESLION ... (p206)

Show that the ANOVA sums of squares SSTO, SSFE, and SSR are all quadratic

forms.

sol:
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5.13 Inferences in Regression Analysis

Regression Coefficients

€ QUESEION ..o (p42)

(a) Derive the variance-covariance matrix of the simple linear regression coefficients,

b by matrix methods. (b) Obtain the estimated variance-covariance matrix of b.

sol:

Mean Response®

Prediction of New Observation*

® TA Class

e Problems: 5.5, 5.16, 5.22, 5.24, 5.26

o« Exercises: 5.31
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Regression Analysis (1)
Kutner's Applied Linear Statistical Models (5/E)

Chapter 0: Multiple Regression (1)

Thursday 09:10-12:00, EEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

Overview

1. Discuss a variety of multiple regression models. (more than one predictors)

2. Present the basic statistical results for multiple regression in

3. The matrix expressions for multiple regression are the as for SLR.

4. An example to illustrate a variety of and

multiple regression analysis.

6.1 Multiple Regression Models

Need for Several Predictor Variables

1. A single predictor variable in the model would have provided an

in

description since a number of affect the response variable.

2. Predictions of the response variable based on a model containing only a single

predictor variable are too to be useful.
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3. Multiple regression analysis is highly useful in experimental situations where the

experimenter can

data or

4. The multiple regression models can be utilized for either

for data from a completely randomized design.

First-Order Model with Two Predictor Variables
1. When there are two predictor variables X; and X5, the regression model:

(6.1)

is called a model with two predictor variables.

2. Assuming that , the regression function for model (6.1) is a

(6.2)
3. (Figure 6.1) The response plane: E(Y) =10+ 2X; +5X, (6.3).

FIGURE 6.1

EY} =
Response M} =10+2x +5 X2
Function is a Y
Plane—Sales v
Promotion Bo =10 o/ :
Example. Response Plane

(a) Any point on the response plane (6.3) corresponds to the mean response E(Y)

at the given combination of levels of
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(b) The error term . the vertical rule between Y; and the

response plane represents the difference between Y; and the mean E(Y;) of the

probability distribution of Y for the given (X1, X;2) combination.

4. The regression function in multiple regression is called a or
a . In Figure 6.1, the response surface is a , but in
other cases the response surface may be more in nature.

5. Meaning of Regression Coefficients

(a) The parameter [y is the of the regression plane.

(b) If the scope of the model includes , then [y represents the
mean response E(Y) at X; = 0, Xy = 0. Otherwise, [ have
any particular meaning as a separate term in the regression model.

(¢) The parameter 3; (32) indicates the in the mean response F(Y)
per unit increase in when is held constant.

(d) When the effect of X; on the mean response does not depend on the level
of X5, and correspondingly the effect of X5 does not depend on the level of

X1, the two predictor variables are said to have or not to

(e) Thus, the first-order regression model (6.1) is designed for predictor variables

whose effects on the mean response are additive or do not interact.

6. The parameters ; and [y are sometimes called

because they reflect the partial effect of one predictor variable when the other pre-

dictor variable is included in the model and is

First-Order Model with More than Two Predictor Variables

1. The regression model:

Y, = (6.5)
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= where X;p =1 (6.5b)

is called a first-order model with p — 1 predictor variables.

2. Assuming that F(g;) = 0, the response function for regression model (6.5) is:

E(Y)= (6.6)
3. This response function is a , which is a plane in more than two
dimensions.
4. The parameter (3 indicates the with a unit

increase in the predictor variable X when all other predictor variables in the re-

gression model are held constant.

5. The first-order regression model (6.5) is designed for predictor variables whose effects

on the mean response are and therefore do not interact.

General Linear Regression Model

1. Define the general linear regression model, with normal error terms, simply in terms

of X variables:

i = (6.7)

where:

(a) 507517"'7 p—1 are

(b) Xi1,---, X, are constants (predictors, explanatory variables).

(c) €; are independent yi=1,---,n.
2. The response function for regression model (6.7) is:

E(Y) =60+ 51 X1+ B Xo+ -+ 4 Bp1 X1 (6.8)

3. Thus, the general linear regression model with normal error terms implies that the

observations Y; are independent , with mean as

given by (6.8) and with constant variance
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4. Qualitative Predictor Variables

(a) The general linear regression model (6.7) encompasses not only quantitative
predictor variables but also ones, such as gender (male, fe-
male) or disability status (not disabled, partially disabled, fully disabled).

(b) Use variables that take on the values to identify

the classes of a qualitative variable.

(c) Consider a regression analysis to predict the length of hospital stay
(Y) based on the age (X;) and gender (X3) of the patient. The first-order

regression model is:

Y, = (6.9)

X;1 = th patient’s age

X =

The response function for regression model (6.9) is:

E(Y) = (6.10)

For male patients, Xs = 0 and response function (6.10) becomes:

EY)= : Male patients (6.10a)

For female patients, X3 = 1 and response function (6.10) becomes:

EY)= : Female patients (6.100)

These two response functions represent lines with differ-

ent intercepts.

(d) In general, we represent a qualitative variable with ¢ classes by means of

indicator variables. (details in Chapter 8)

5. The first-order model with age, gender (male, female) or disability status
(not disabled, partially disabled, fully disabled) as predictor variables then is:

Y, = (6.11)
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where:

X;1 = th patient’s age

Xu =

6. Polynomial Regression

(a) Polynomial regression models are special cases of the general linear regres-

sion model. They contain and terms of the

predictor variable(s), making the response function

(b) A polynomial regression model with one predictor variable:

(c) If we let X;; = X; and X;5 = X?; we can write (6.12) as
Yi = 0o+ f1Xi1 + o Xiz + &

which is in the form of general linear regression model (6.7). (detail in Chapter
8).

7. Transformed Variables

(a) Models with transformed variables involve complex, curvilinear response func-

tions, yet still are special cases of the general linear regression model.

(b) A model with a transformed variable:

Y, =logV; = o+ f1Xu + BoXio + B3 Xiz + €.

(c) A model with a transformed variable:

Y;/ =1/Y; = By + f1Xi1 + B2 Xio + €.
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8. Interaction Effects

(a) When the effects of the predictor variables on the response variable are not
additive, the effect of one predictor variable depends on the levels of the other
predictor variables. The general linear regression model (6.7) encompasses

regression models with nonadditive or

(b) An example of a nonadditive regression model with two predictor
variables X; and Xs:

Yi = Bo+ i Xa + B2 Xio + B3 X1 Xip + &
= Bo+ 51X + BoXio + B3 Xz + &

The response function is complex because of the interaction term

It is a special case of the general linear regression model. (detail in Chapter 8)
9. Combination of Cases

(a) A regression model may combine several of the elements we have just noted

and still be treated as a general linear regression model.

(b) Consider the following regression model containing linear and quadratic
terms for each of two predictor variables and an interaction term represented

by the cross-product term:

Yi = Bo+/iXa+ 52X7;21 + 3 Xio + 54X¢22 + Bs X1 Xio + €
= Bo+ BiZn + Balip + B3Ziz + BaZia + BsZis + €.

(¢) (Figure 6.2) Two complex response surfaces.
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FIGURE 6.2 Additional Examples of Response Functions.

Y y

() &)

10. Meaning of Linear in General Linear Regression Model

(a) It should be clear from the various examples that general linear regression

model (6.7) is not restricted to linear response surfaces.
}/i = BO + ﬁlXil + 62Xi2 + -+ 6p—1Xi,p—1 + & (67)

The term refers to the fact that model (6.7) is linear in the

; it does-not refer to the

(b) We say that a regression model is linear in the parameters when it can be

written in the form:

Y, =

where the terms c;o, ¢;1, etc., are coefficients involving the

(¢) An example of a nonlinear regression model is the following;:

Y; = Boexp(51.X;) + &

This is a regression model because it cannot be expressed in

the form of (6.17). (nonlinear regression models in Part III)
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6.2 General Linear Regression Model in Matrix Terms

1. We now present the principal results for the general linear regression model (6.7) in

matrix terms. The matrix notation may hide enormous computational complexities.

2. The actual computations will, in all but the very simplest cases, be done by com-

puter.

3. Express general linear regression model (6.7):

Y; = (6.7)

in matrix terms:

where
Y == y X - )
6 = 7 E = )
4. € is a vector of independent normal random variables with and
5. The random vector Y has expectation: , and the variance-covariance

matrix of Y is the same as that of e:
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6.3 Estimation of Regression Coefficients

1.

The least squares criterion (1.8) is generalized as follows for general linear regression
model (6.7):

Q- (6.22)

The least squares estimators are those values of 5y, 81, - - -, B,-1 that

The least squares normal equations for the general linear regression model (6.19)

are:

(6.24)

The least squares estimators are:

b= (6.25)

The method of maximum likelihood leads to the same estimators for normal error

regression model (6.19) as those obtained by the method of least squares in (6.25).
The likelihood function in (1.26) generalizes directly for multiple regression:

1 I
2y _ 2

L. = (2ro?ynz P {_ﬁ ;(Yi —Bo— BiXa — = Bpo1Xip-1) } (6.26)

Maximizing this likelihood function with respect to By, 81, -+, Bp—1 leads to the es-

timators in (6.25). These estimators are least squares and maximum likelihood esti-

mators and have all the properties mentioned in Chapter 1: they are

, and

6.4 Fitted Values and Residuals

1.

Let the vector of the fitted values Y; be denoted by Y and the vector of the residual
terms e; = Y; — }7@ be denoted by e:
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2. The fitted values:

3. The vector of the fitted values Y can be expressed in terms of the hat matrix H as

follows:

Y = . where (6.30)

4. The residual terms: e=Y — Y =

5. Similarly, the vector of residuals can be expressed: e =

6. The variance-covariance matrix of the residuals is: o%(e) = o%(I — H) which is
estimated by:
s*(e) = (6.33)

6.5 Analysis of Variance Results

Sums of Squares and Mean Squares

1. The sums of squares for the analysis of variance in matrix terms are, from (5.89):

SSTO =

SSE =

SSR =

where J is an n x n matrix of 1s defined in (5.18) and H is the hat matrix defined
in (6.30a).
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2. (Table 6.1) ANOVA Table for general linear regression:

TABLE 6.1 Soliréd oF :
ANOVA Table Variation ss df MS
for General
Linear : ! § S

SSR=bXY~- |- |YJY =1 MSR = ——
Regression Regresion ( & > i p~1
Model (6.19). 33k

; 1
Total 5510 =Y'Y — <F> xly B

I Test for Regression Relation
1. To test whether there is a regression relation between the response variable Y and
the set of X variables Xi,---,X,,
Hy
H,

2. The test statistic:
=

3. The decision rule to control the Type I error at a:

Coefficient of Multiple Determination
1. The coefficient of multiple determination, denoted by R?, is defined as

R? = (6.40)

2. It measures the of total variation in Y associated with

the use of the set of X variables X;,---, X,_;.

3. 0 < R? < 1 assumes the value 0 when all , and the

value 1 when all Y observations fall directly on the fitted regression surface, ie.,

when for all 4.
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4. Adding more X variables to the regression model can only R? and
never reduce it, because SSE can never become larger with more X variables and

SSTO is always the same for a given set of responses.

5. Since R? usually can be made larger by including a larger number of predictor
variables, it is sometimes suggested that a modified measure be used that adjusts

for the number of X variables in the model.

6. The coefficient of multiple determination, denoted by R, adjusts R?

by dividing each sum of squares by its associated degrees of freedom:

R =

This adjusted coefficient of multiple determination may actually become smaller
when another X variable is introduced into the model, because any decrease in

SSE may be more than offset by the loss of a degree of freedom in the denominator

n—p.

7. A large value of R? does not necessarily imply that the fitted model is
a useful one. For instance, observations may have been taken at only a few levels of

the predictor variables. Despite a high R? in this case, the fitted model may not be
useful if most predictions require extrapolations outside the region of observations.
Again, even though R? is large, M'SE may still be too large for inferences to be

useful when high precision is required.

Coefficient of Multiple Correlation

1. The coefficient of multiple correlation R is the positive square root of

R:

6.6 Inferences about Regression Parameters

1. The least squares and maximum likelihood estimators in b are

E{b} = (6.44)
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2. The variance-covariance matrix (dimension p x p):

o*{b} = (6.46)
3. The estimated variance-covariance matrix (dimension p x p):
s*{b} = (6.48)

Interval Estimation of

1. For the normal error regression model (6.19), we have:

, k=0,1,..,p—1 (6.49)
2. The confidence limits for £ with 1 — « confidence coefficient are:
(6.50)

Tests for [

1. The test hypothesis:

2. The test statistic:

3. The decision rule:

4. The of the t test can be obtained as explained in Chapter 2, with

the degrees of freedom modified to n — p. As with simple linear regression, an

can also be conducted to determine whether or not gy = 0 in multiple

regression models. (details in Chapter 7).
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Joint Inferences*

6.7 Estimation of Mean Response and Prediction of

New Observation®
Interval Estimation of £{Y},}
Confidence Region for Regression Surface
Simultaneous Confidence Intervals for Several Mean Responses
Prediction of New Observation Y},
Prediction of Mean of m New Observations at X,
Predictions of ¢ New Observations

Caution about Hidden Extrapolations

6.8 Diagnostics and Remedial Measures

1. Diagnostics play an important role in the and of

multiple regression models.

2. Most of the diagnostic procedures for (Chapter 3) carry over directly to

multiple regression.
3. Many specialized diagnostics and remedial procedures for multiple regression have

also been developed (details in Chapters 10 and 11.)

Scatter Plot Matrix

1. Univariate plots:

for each of the predictor variables and for the response variable can provide helpful,
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preliminary univariate information about these variables.
2. Bivariate plots: Scatter plots
(a) Scatter plots of the variable against each variable

can aid in determining the nature and strength of the

between each of the predictor variables and the response variable and in iden-

tifying gaps in the data points as well as

data points.

(b) Scatter plots of each predictor variable against each of the other predictor vari-

ables are helpful for studying the bivariate relationships among the predictor

variables and for finding

3. Multiivariate plots: Scatter plot matrix

FIGURE 6.4
SYGRAPH
Scatter Plot
Matrix and
Correlation

SALES

(a) Scatter Plot Matrix

Matrix— Y

Dwaine Studios
Example.

TARGTPOP

’\

Y . .,

4

DISPOINC

and detecting

SALES
TARGTPOP
DISPOINC

(b) Correlation Matrix

SALES  TARGTPOP  DISPOINC

1.000 .945 836
1.000 781
1.000

(a) (Figure 6.4) the Y variable for anyone scatter plot is the name found in its

, and the X variable is the name found in its

(b) The scatter plot matrix in Figure 6.4 shows in the first row the plots of Y
(SALES) against X; (TARGETPOP) and X, (DISPOINC), of X; against YV
and X5 in the second row, and of X, against Y and X; in the third row. (These

variables are described on page 236.)

(c) Scatter plot matrix facilitates the study of the relationships among the vari-

ables by comparing the scatter plots within a row or a column.

4. A complement to the scatter plot matrix that may be useful at times is the

This matrix contains the coefficients of simple correlation
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between Y and each of the predictor variables X;,s = 1,--- p—1, as well as all of the
coefficients of simple correlation among the predictor variables: between
X7 and Xs, between X; and X3, etc.

Note that the correlation matrix is and that its main diagonal

contains because the coefficient of correlation between a variable and itself

is

Three-Dimensional Scatter Plots

1.

Some statistics packages provide three-dimensional scatter plots or

point clouds, and permit of these plots to enable the viewer to see

the point cloud from different perspectives or patterns. (Figure 6.6)

Residual Plots

1.

plot(e; ~ Y; ): A plot of the against the is useful

for assessing the of the multiple regression function and the
of the variance of the error terms, as well as for providing informa-

tion about , just as for simple linear regression.

plot(e; ~ time): A plot of the against or against some

other can provide diagnostic information about possible

between the error terms in multiple regression.

bozplot(e;), qqnorm(e;): Box plots and normal probability plots of the residuals
are useful for examining whether the error terms are reasonably

distributed.

. plot(e; ~ X;): The plot of the residuals against each of the variables

can provide further information about the adequacy of the regression function with
respect to that predictor variable (e.g., whether a curvature effect is required for that

variable) and about possible in the magnitude of the error variance

in relation to that predictor variable.

plot(e; ~ Xomit): Plot the residuals against variables that

were omitted from the model, to see if the omitted variables have substantial ad-
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ditional effects on the response variable that have not yet been recognized in the

regression model.

6. plot(e; ~ X;X;): Plot the residuals against interaction terms for potential interac-

tion effects not included in the regression model, such as against X; X5, X; X3, and

X5 X3, to see whether some or all of these are required in the
model.

7. plot(le;] ~ Y;), plot(e2 ~ Y;): A plot of the residuals or the
residuals against the fitted values is useful for examining the of the

variance of the error terms.

8. plot(le;| ~ X;), plot(e? ~ X;): If nonconstancy is detected, a plot of the abso-
lute residuals or the squared residuals against each of the predictor variables may
identify one or several of the predictor variables to which the magnitude of the

is related.

Correlation Test for Normality”*

1. The correlation test for normality described in Chapter 3 carries forward directly

to multiple regression.

Brown-Forsythe Test for Constancy of Error Variance

1. The Brown-Forsythe test statistic (3.9) for assessing the constancy of the error
variance can be used readily in multiple regression when the error variance increases

or decreases with variables.

2. To conduct the Brown-Forsythe test, we divide the data set into ,

as for simple linear regression, where one group consists of cases where the level of
the predictor variable is relatively and the other group consists of cases

where the level of the predictor variable is relatively

3. The Brown-Forsythe test then proceeds as for simple linear regression.
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Breusch-Pagan Test for Constancy of Error Variance*

F Test for Lack of Fit

1.

The lack of fit F test (Chapter 3) for SLR can be carried over to test whether the

multiple regression response function:

is an appropriate response surface.

Repeat observations in multiple regression are observations on Y
corresponding to levels of each of the X variables that are constant from trial to

trial.

With two predictor variables, repeat observations require that X; and X, each

remain at given levels from trial to trial.

Once the ANOVA table (Table 6.1), has been obtained, SSE is decomposed into
the pure error sum of squares (SSPE) and the lack of fit sum of squares (SSLF).

SSPE is obtained by first calculating for each replicate group the sum of squared
deviations of the Y observations around the group mean, where a replicate group

has the for each of the X variables.

Let ¢ denote the number of groups with

and let the mean of the Y observations for the jth group be denoted by Y;. Then the
pure error sum of squares is . The lack of fit sum of squares
SSLF equals the difference

Test hypothests:

Hoi

H, E{Y}# Bo+ 51 Xa+ -+ Bpo1Xpa

Test statistic:
Fr =

Decision rule:
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Remedial Measures

1.

The remedial measures described in Chapter 3 are also applicable to multiple re-

gression.

When a more complex model is required to recognize or

effects, the multiple regression model can be expanded to include these effects.

Transformations on the variable Y may be helpful when the distribu-

tions of the error terms are and the variance of the error terms

is

Transformations of some of the predictor variables may be helpful when the effects,

of these variables are

Transformations on Y and/or the predictor variables may be helpful in eliminating

or substantially

The usefulness of potential transformations needs to be examined by means of

and other to determine whether the mul-

tiple regression model for the transformed data is appropriate.

Box-Cox Transformations is also applicable to multiple regression models.

6.9 An Example - Multiple Regression with Two Pre-

dictor Variables

Setting

1.

(Figure 6.5a) Dwaine Studios, Inc., operates portrait studios in 21 cities (n = 21)
of medium size. These studios specialize in portraits of children. The company is
considering an expansion into other cities of medium size and wishes to investigate
whether sales (Y or SALES, in thousands of dollars) in a community can be pre-
dicted from the number of persons aged 16 or younger in the community (X; or
TARGTPOP for target population) and the per capita disposable (*FI985 AT AL
Ffr18) personal income in the community (X, or DISPOINC for disposable income

in thousands of dollars).
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|:|GURE 6.5
SYSTAT
Multiple
Regression
Qutput and
Basic
Data—Dwaine
Studios
Example.

DEP VAR: SALES N: 21 MULTIPLE R: 0.957 SQUARED MULTIPLE R:

(a) Multiple Regression Output

0.917

ADJUSTED SQUARED MULTIPLE R: .907 STANDARD ERROR OF ESTIMATE:

VARIABLE  Ci
CONSTANT

TARGTPOP
DISPOINC

SOURCE

REGRESSION
RESIDUAL

INVERSE (X'X)

OEFFICIENT STD ERROR

-68.8571 60.0170
1.4546 0.2118
9.3655 4.0640

ANALYSIS OF VARIANCE

SUM-OF-SQUARES ~ DF

24015.2821 2
2180.9274 18

1
1 29.7289
2 0.0722
3 -1.9926

STD COEF TOLERANCE

11.0074

0.0000 .
0.7484 0.3896
0.2511 0.3896

MEAN-SQUARE

12007.6411

0.00037

-0.0056

2. The first-order regression model:

121.1626

0.1363

T
-1.1473

6.8682
2.3045

F-RATIO

99.1035

P(2 TAIL)

0.2663

. 0.0000

P

0.0000

0.0333

CASE X1

(b)

X2
16.7
16.8
18.2
16.3
17.3
18.2
15.9
17.2
16.6
16.0
18.3
17.1
17.4
15.8
17.8
18.4
16.5
16.3
18.1
19.1
16.0

Basic Data

Y
174.4
164.4
244.2
154.6
181.6
207.5
152.8
163.2
145.4
137.2
241.9
191.1
232.0
145.3
161.1
209.7
146.4
144.0
232.6
224.1
166.5

FITTED RESIDUAL
187.184 -12.7841
154.229 10.1706
234.396 9.8037
153.329 1.2715
161.385  20.2151
197.741 9.7586
152.055 0.7449
167.867 -4.6666
157.738 -12.3382
136.846 0.3540
230.387 11.5126
197.185 -6.0849
222.686 9.3143
141.518 3.7816
174.213 -13.1132
228.124 -18.4239
145.747 0.6530
159.001 -15.0013
230.987 1.6130
230.316 -€.2160
157.064 9.4356

with normal error terms is expected to be appropriate, on the basis of the scatter

plot matrix in Figure 6.4a.

3. Note the

posable income and sales.

4. Also note that there is

lationship.

5. Finally note that there is also some

dictor variables.

between target population and sales and between dis-

between disposable income and sales re-

relationship between the two pre-

6. (Figure 6.6) A 3D plot of the point cloud supports the tentative conclusion that a

response plane may be a reasonable regression function to utilize here.
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Chapter 6: Multiple Regression (1)
g—Dwaine Studios Example.

FIGURE 6.6 SYGRAPH Plot of Point Cloud before and after Spinnin
(a) Before Spinning (b) After Spinning
250 o 250 ~
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Basic Calculations
1. The X and Y matrices for the Dwaine Studios example:

[ 1744 |

[ 1 685 16.7 |
1 452 16.8 164.4
X — o Y —
1 523 16.0 166.5
9.
90.7980  0.0722 —1.9926
(X'X)"'= | 00722 000037 —0.0056
~1.9926 —0.0056  0.1363
3.
3.820
X'Y = | 249.643
66.073

January 24, 2023
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Estimated Regression Function

1. The least squares estimates b are readily obtained by

—68.857
b=(XX)"'XY=| 1455
9.366

2. The estimated regression function is:

Y = —68.857 + 1.455X; + 9.366X,

3. (Figure 6.7) A 3D plot of the estimated regression function, with the responses
super-imposed. The residuals are represented by the small vertical lines connecting

the responses to the estimated regression surface.

FIGURE 6.7 300

S-Plus Plot of

Estimated

Regression 250

Surface— i

Dwaine Studios

Example. < 200
150

4. This estimated regression function indicates that mean sales are expected to

thousand dollars when the target population increases by 1 thousand persons aged
16 years or younger, holding per capita disposable personal income constant, and

that mean sales are expected to thousand dollars when per

capita income increases by 1 thousand dollars, holding the target population con-

stant.

5. (Figure 6.5a) Software output for the Dwaine Studios example.
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Fitted Values and Residuals

1. The fitted values ~ _
187.2
. 154.2

157.1

2. The residuals _
—12.8
10.2

9.4

Analysis of Appropriateness of Model

1. (Figure 6.8a) Begin analysis of the appropriateness of regression model by consider-
ing the plot of the residuals e; against the fitted values Y in Figure 6.8a. This plot

does not suggest any from the response plane nor that

the variance of the error terms varies with the level of Y.

(b) Residual Plot against X,

. inst Y
FIGURE 6.8 (a) Residual Plot against a5t
SYGRAPH bl .
Diagnostic ° i
Plots—Dwaine 1s 15 .. R .. .
Studios R %
Example. ] = 5F e .
= 5 e 3 oo %
3 ° hel
2 L4 3 .
3 & -5+ o o
& =5 ° . .
o .
L .
—1sf ¢ -15 .
L]
B0 =% 50 60 70 80 90 100
120 170 220 270 30 40
Fitted Targtpop
(c) Residual Plot against X (d) Residual Plot against X; X,
25 25
° °
151 15F
J
e °® o o (XY ° o ®
® 5 e = 5 o
3 X . 3 o ® .
g g
= -5r rd » < _s5hb ° . .
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¢ .
-25 I L 1 | ~25
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Dispoinc
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2. (Figures 6.8b, 6.8c) Plots of the residuals e against X; and X are entirely consistent

with the conclusions of by the response function and

of the error terms.

3. Ifaplot of the residuals e against the interaction term X; X, shows a

that means an interaction effect may be present, so that a response function of the

type

might be more appropriate.

4. (Figure 6.8d) Plot does not exhibit any ; hence, no interac-

tion effects reflected by the model term X; X5 appear to be present.

5. (Figure 6.9a) A plot of the absolute residuals against the fitted values. There is no

indication of of the error variance.
FIGURE 6.9 ©) ()
Additional Plot of Absolute Normal Probability Plot
Diagnostic Residuals against ¥
Plots—Dwaine 25 30
Studios
Example. s N 20 ®
[ ]
10 wneee ®
T 15 L s °
§ e % o Bl or o
wv ® wv
2 6k o o iitie & o’
-10t+ oo
° o o b
5F . ° —20+
0 Y 2 | yd | -30 | | | ] L
120 170 220 270 -30 -20 =10 0 10 20 30
Fitted Expected
6. (Figure 6.9b) A normal probability plot of the residuals shows a
pattern.
7. The coefficient of between the ordered residuals and their expected
values under normality is . This high value helps to confirm the reason-

ableness of the conclusion that the error terms are fairly normally distributed.
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8. Since the Dwaine Studios data are cross-sectional and do not involve a time se-
quence, a time sequence plot is not relevant here. Thus, all of the diagnostics

the use of regression model (6.69) for the Dwaine Studios example.

Analysis of Variance

1. To test whether sales are related to target population and per capita disposable

income, we require the ANOVA table.

|:|GURE 6.5 (a) Multiple Regression Qutput
SYSTAT DEP VAR: SALES N: 21 MULTIPLE R: 0.957 SQUARED MULTIPLE R:
: 0.917
Multiple ADJUSTED SQUARED MULTIPLE R: .907 STANDARD ERROR OF ESTIMATE:
Regression 11.0074
t=)

Output and

Basic

Data—Dwaine VARIABLE ~ COEFFICIENT  STD ERROR  STD COEF TOLERANCE T P(2 TAIL)

Studios CONSTANT ~ -68.8571 60.0170 0.0000 : -1.1473 0.2663

Example. TARGTPOP 1.4546 0.2118 0.7484  0.3896 6.8682 . 0.0000
DISPOINC 9.3655 4.0640 0.2511  0.3896 2.3045 0.0333

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES ~ DF MEAN-SQUARE ~ F-RATIO P
REGRESSION 24015.2821 2 12007.6411  99.1035  0.0000

RESIDUAL 2180.9274 18 121.1626

INVERSE (X'X)

1 2 3
1 29.7289
2 0.0722  0.00037
3 -1.9926 -0.0056  0.1363

2. Test of Regression Relation. To test whether sales are related to target popu-

lation and per capita disposable income:

Hg;ﬁlz()andﬁgz()
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H, : not both ; and 5 equal zero

Test statistic:

F*=99.1

For oo = 0.05, we require F{g.95.2.18) = 3.55. Since F* = 99.1 > 3.55, we conclude H,
(reject Hy), that sales are related to target population and per capita disposable
income. The P-value for this test is 0.0000.

3. Coefficient of Multiple Determination.
R* =0.917

Thus, when the two predictor variables, target population and per capita disposable

income, are considered, the variation in sales is reduced by . The

adjusted coefficient of multiple determination R? = 0.907.

Estimation of Regression Parameters*
Estimation of Mean Response*

k

Prediction Limits for New Observations

® TA Class

« Problems: 6.5 (a-d, f), 6.6 (a, b), 6.9, 6.10 (a-d)

e Exercises: 6.22
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Regression Analysis (1)
Kutner's Applied Linear Statistical Models (5/E)

Chapter [: Multiple Regression (1)

Thursday 09:10-12:00, E&E 260205
Han-Ming Wu
Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

Overview

1. Some specialized topics that are unique to multiple regression: (1) extra sums of
squares, (2) the standardized version of the multiple regression model, and (3)

multicollinearity:.

7.1 Extra Sums of Squares

Basic Ideas

1. An extra sum of squares measures the in the

when one or several predictor variables are added to the re-

gression model, given that other predictor variables are already in the model.

2. Equivalently, one can view an extra sum of squares as measuring the

in the sum of squares when one or several predictor

variables are added to the regression model.

3. (Table 7.1) A portion of the data for a study of the relation of amount
of body fat (Y) to several possible predictor variables, based on a sample of 20

healthy females 25 — 34 years old. The possible predictor variables are triceps
skinfold thickness (X;)(=88M K MAEHTEE), thigh circumference (Xo)(AKEE),

and midarm circumference (X3) (PEE).
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TABLE 7.1 -
Basic . . Triceps Thigh Midarm
Data—Body Sub!ect Skinfold Thickness Circumference Circumference Body Fat
Fat Example. d Xin Xi2 Xis Yi
1 19.5 43.1 29.1 11.9
2 24.7 49.8 28.2 22.8
3 30.7 51.9 37.0 18.7
18 30.2 58.6 24.6 254
19 22.7 48.2 271 14.8
20 25.2 51.0 27.5 211

4. Background and goal: The amount of body fat in Table 7.1 for each of the 20 persons

was obtained by a cumbersome and expensive procedure requiring the immersion

of the person in water. It would therefore be very helpful if a regression model

with some or all of these predictor variables could provide reliable estimates of the

amount of body fat since the measurements needed for the predictor variables are

easy to obtain.

5. (Table 7.2) Conduct four regression results when body fat (Y') is regressed on triceps
skinfold thickness (X) alone, (2) on thigh circumference (X5) alone, (3) on X, and

X5 only, and (4) on all three predictor variables.

The total sum of squares is

(a) (Table 7.2a) The regression sum of squares when X7, only is in the model is,

. The error sum of squares for this model is

TABLE 7.2 ? :
R p (a) Regression of Y on X;
e ? = —1.496 + .8572X
Results for S e !
Several Fitted Source of ¢
Models—Body Variation ss df MS
Fat Example. Regression 352.27 1 352.27
Error 143.12 18 7.95
Total 495.39 19
Estimated Estimated
Variable Regression Coefficient Standard Deviation t*
X b =.8572 s{b1} =.1288 6.66
(b) Regression of Y on X,
¥ = —23.634 4 .8565X,
Source of
Variation ss df MS
Regression 381.97 1 381.97
Error 113.42 18 6.30
Total 495.39 19
Estimated Estimated
Variable Regression Coefficient Standard Deviation t*
% b, = .8565 s{by} =.1100 7.79

(111-2) Regression Analysis (I)
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TABL.E 7.2 (c) Regression of ¥ on X; and Xz
(Continued). 0 = —19.174 + .2224 X, + .6594 X2
Source of
Variation ss df At
Regression 385.44 2 : 9§Z§
Error 109.95 17 '
Total 495.39 19
Estimated Estimated
Variable Regression Coefficient Standard Deviation t
Xs by = .2224 s{bi1} = .3034 .73
% b, = .6594 s{by} = .2912 2.26
(d) Regression of Y on X;, X, and X3
Y =117.08 +4.334X, — 2.857X; — 2.186 X5
Source of
Variation ss df Ms
Regression 396.98 3 132.33
Error 98.41 16 6.15
Total 495.39 19
Estimated Estimated
Variable Regression Coefficient Standard Deviation L g
X; bi= 4334 s(bi) = 3.016 1.44
XZ bz = —2.857 ¢ S{bz} = 2.582 B O i
X3 b3 =-2.186 s{bs} = 1.596 fiiiyae

(b) (Table 7.2c) When X; and X, are in the regression model, the regression

sum of squares is and the error sum of squares is

(c¢) Notice that the error sum of squares when X; and X, are in the model,

, is smaller than when the model contains only

X17

(d) The difference is called an and will be denoted by

SSR(X3|X1) =
= 385.44 — 352.27 = 33.17
= 143.12 —109.95 = 33.17
This in the error sum of squares is the result of

to the regression model when , is already included in the model.
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(e) Thus, the extra sum of squares SSR(X,|X;) measures the

(additional or extra reduction) of adding X5 to the regression model when X7,

is already in the model.

(f) The reason for the equivalence of the in the error sum

of squares and the in the regression sum of squares is

the basic analysis of variance identity:

Since SSTO measures the and hence

does not depend on the regression model fitted, any reduction in SSE implies

an identical increase in SSR.

6. (Tables 7.2¢c, 7.2d) We can consider other extra sums of squares, such as the marginal
effect of adding X3 to the regression model when X, and X, are already in the

model.

= = 109.95-98.41 = 11.54

or, equivalently:

= = 396.98—385.44 = 11.54.

7. (table 7.2a, 7.2d) We can even consider the marginal effect of adding several vari-
ables, such as adding both X, and X3 to the regression model already containing
Xi.

= = 143.12-98.41 = 44.71

or, equivalently:

= = 396.98—352.27 = 44.71

Definitions

1. An extra sum of squares always involves the between the

for the regression model containing the X variable(s) already in the

model and the error sum of squares for the regression model containing both the
X variable(s) and the X variable(s).
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2. Equivalently, an extra sum of squares involves the difference between the two cor-

responding

3. Thus, we define:

SSR(X,|Xs) = (7.1a)

or, equivalently:

SSR(X1|Xs) = (7.1b)

4. If X, is the extra variable, We define:

SSR(X,|X,) = (7.20)

or, equivalently:

SSR(X,|X1) = (7.2b)

5. Extensions for three or more variables are straightforward:

SSR(X5| X1, Xs) = (7.3a)
or:
SSR(X5| X1, Xs) = (7.4b)
and
SSR(Xs, X31X1) = (7.4a)
or:
SSR(Xs, X31X1) = (7.4b)

Decomposition of SSR into Extra Sums of Squares

1. In multiple regression, we can obtain a of decompositions of SSR into

sums of squares.
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2. Consider the multiple regression model with two X variables:

Yi= B0+ 51X+ 5o Xoi+6, i=1,n

3. Begin with the identity for Xj:

(7.5)

when X is the X variable in th model. Replacing SSE(X;) by its equivalent in
(7.2a): , we obtain:

SSTO = (7.6)

4. Use the same identity for multiple regression with two X variables as in (7.5) for a

single X variable:

SSTO = (7.7)

Solving (7.7) for SSE (X7, X5) and using this expression in (7.6) lead to:

(7.8)

5. We have decomposed SSR(X;, X3) into two marginal components:

(a) : measuring the contribution by including X; alone in the

(b) : measuring the additional contribution when Xy is included,

given that X; is already in the model.

6. The order of the X variables is arbitrary:

SSR(X1, X,) = (7.9)

7. Body Fat Example

(a) A sample of n = 20 healthy females 25 — 34 years old; Y: amount of body

fat; Xi: triceps skinfold thickness; X5: thigh circumference; Xj3: midarm

circumference.
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(b) (Figure 7.1): The extra sum of squares can be viewed either as a

or as an when the second predictor variable is added to

the regression model.

FIGURE 7.1 Schematic Representation of Extra Sums of Squares—Body Fat Example.

SSTO = 495.39 SSTO = 495.39
= SSR(X;) = 352.27
$SR(X7) = 381.97 9 ><— SSR(Xy, X) = 385.44 —=< (53R

~— SSR(X,|X;) = 33.17

SSR(X4|X5) = 3.47 —>L

> SSE(Xy) = 143.12

L >
: SSE(X,, X5) = 109.95 —<

d J L

SSE(X,) = 113.42 <L

8. When the regression model contains three X variables, a variety of decompositions
of SSR(X1, Xs, X3) can be obtained. We illustrate three of these:

SSR(X1, X2, X3) = (7.10a)
SSR(X1, X2, X3) = (7.100)
SSR(X1, X2, X3) = (7.10¢)

9. The number of possible decompositions becomes as the number of X

variables in the regression model
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ANOVA Table Containing Decomposition of SSR

1. (Table 7.3, 7.4) ANOVA tables can be constructed containing decompositions of the

regression sum of squares into extra sums of squares.

TABLE 7.3 S f

Example of Vou-rctt? © ss df MS

ANOVA Table . ;

with Regression SSR(X1, X2, X3) 3 MSR(X1, X2, X3) |

Decomposition X1 SSR(X1) 1 MSR(X7) ]

of SSR for X2l X4 SSR(X21X1) 1 MSR(X2|X1) ‘

Three X X3l X1, X2 SSR(X31 X1, X2) 1 MSR(X31 X1, X2)

Variables. Error SSE(Xq, X2, X3) n—4 MSE(X1, X3, X3) ‘
Total $STO n—1 '

2. Note that each extra sum of squares involving a has
associated with it degree of freedom.

3. Extra sums of squares involving two extra X variables, such as SSR(Xs, X3|X1),
have two degrees of freedom associated with them: an extra sum of squares as a

sum of two extra sums of squares, each associated with degree of freedom.

4. Many computer regression packages provide decompositions of SSR into -
degree-of-freedom extra sums of squares, usually in the order in which the X vari-

ables are

5. If the X variables are entered in the order X, X5, X3, the extra sums of squares

given in the output are:

6. If an extra sum of squares involving several extra X variables is desired, it can be

obtained by summing appropriate single-degree-of-freedom extra sums of squares.
For instance, to obtain SSR(Xs, X3|X}):

SSR(X,, X3 X)) =

7. The reason why extra sums of squares are of interest is that they occur in a variety

of about where the question of concern is

whether certain X variables can be dropped from the regression model.
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7.2 Uses of Extra Sums of Squares in Tests for Re-

gression Coefficients

Test whether a Single 5, =0

1. Test whether the term (X} can be dropped from a multiple regression model,

Hy H, : ,
the test statistic: is appropriate for this test.
2. Use : consider the first-order regression model

with three predictor variables:
}/i = 50 + BlXil + ﬂZX’iZ + B3Xi3 +&; Full model (712)
To test the alternatives:

HO : 53 =0 Ha : 53 7é 0. (713)

3. The error sum of squares SSE(F) for the full model:

SSE(F) = . dfp=n—A4.

4. (Reduced Model) The reduced model when Hy in (7.13) holds:

Reduced model  (7.14)

The error sum of squares SSE(FE) for the reduced model:

SSE(R) = . dfp=n—3.

5. The general linear test statistic:

F* =

= (7.15)
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6. The test whether or not 53 = 0 is a

already in the model.

, given that X; and X, are

7. Test statistic (7.15) shows that we do not need to fit both the full model and the re-

duced model to use the general linear test approach here. A single

can provide a fit of the full model and the appropriate extra sum of squares.

8. Body Fat Example

(a) To test for the model with all three predictor variables whether midarm cir-

cumference (X3) can be dropped from the model.

TABLE 7.4

ANOVA Table ~ S0urce of
with Variation
Decomposition Regression
of SSR—Body X1

Fat Example X2l X4

with Three X31Xq, X5
Predictor Error
Variables. Total

AR

396.98
352.27
33.17
11.54
98.41

495.39

16
19

MsS

13233
352.27
33.17
11.54
6.15 |

(b) (Table 7.4) ANOVA results of the full regression model (7.12), including the

extra sums of squares when the predictor variables are entered in the order

X1, X, X3. Hence, test statistic (7.15) is:

SSR(X3|X1,Xs) | SSE(X1, Xs, X3)

=
1 n—4
For a = 0.01, we require . Since
we conclude , that X3 can be dropped from the regression model that

already contains X; and Xs.

(c) (Table 7.2d) the t* test statistic:

tr =

Since

, we see that the two test statistics are

, just as for simple linear regression.
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9. The F* test statistic (7.15) to test whether or not f3 = 0 is called a

to distinguish it from the F* statistic in (6.39b) for testing whether
all B, = 0, i.e., whether or not there is a regression relation between Y and the set

of X variables. The latter test is called the

Test whether Several 5. = 0

1. To know whether both 5, X, and f3X3 can be dropped from the full model (7.12).

The alternatives here are:

Hy : H, : not both 8y and 33 equal zero (7.16)

2. With the general linear test approach, the reduced model under Hj is:

Reduced model (7.17)

and the error sum of squares for the reduced model is:

SSE(R) = dfs =

3. The general linear test statistic:

F* =

4. Body Fat Example

(a) To test in the body fat example for the model with all three predictor variables
whether both thigh circumference (X3) and midarm circumference (X3) can

be dropped from the full regression model (7.12):

SSR(XQ, X3’X1) —

(b) Test statistic (7.18) therefore:

F* = _
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(¢) For a« = 0.05, we require . Since F* = 3.63 is
at the of the decision rule (the P-value of the test statis-
tic is ), we may wish to make before deciding

whether X, and X3 should be dropped from the regression model that already

contains Xj.

7.3 Summary of Tests Concerning Regression Coeffi-

cients”®

7.4 Coeflicients of Partial Determination

1. Extra sums of squares are not only useful for on the regression coefficients
of a multiple regression model, but they are also encountered in descriptive measures

of relationship called

2. Recall: the coefficient of multiple determination, R?, measures the

in the variation of Y achieved by the introduction of the

of X wvariables considered in the model.

3. A coefficient of determination measures the

of one X variable when all others are already included in the model.

Two Predictor Variables

1. Consider a first-order multiple regression model with two predictor variables:
Yi = fo+ 51X + B2 Xia + i

(a) : measures the variation in Y when Xy is included in the model.

(b) measures the variation in Y when both X; and X, are

included in the model.

2. (Recall) Coefficient of determination:
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3. The relative marginal reduction in the variation in Y associated with X; when X,

is already in the model is:

2 _
RY1|2 = =

This measure is the between Y and X,

given that X, is in the model. Denoted by

4. R%/l\Z measures the in the variation in Y remaining
after Xy is included in the model that is by also including X; in the
model.

5. The coefficient of partial determination between Y and X5, given that X is in the

model, is defined correspondingly:

General Case

1. The generalization of coefficients of partial determination to three or more X vari-

ables in the model:

R2Y1\23 = (7-37)
R?’2\13 = (7‘38)
_ SSR(X3| X1, X5)
- SSE(X1, X)) (7:39)
SSR(X4|X1,XQ,X3) (7 40)

SSE(X1, X, X3)

2. Body Fat Example

(a) Example: we can obtain a variety of coefficients of partial determination. (Ta-
bles 7.2 and 7.4):

2 _
RY2\1 =
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R%/3|12 =
R%’I\Q =
(b) When X, is added to the regression model containing X, the sum
of squares is reduced by

(¢) SSE for the model containing both X; and X, is only reduced by another
percent when X3 is added to the model.

(d) If the regression model already contains X, adding X; reduces

by only

Coefficients of Partial Correlation

1. The of a coefficient of partial determination is called a

2. One use of partial correlation coefficients is in computer routines for finding the

to be selected next for inclusion in the regression model.

3. For the body fat example, we have:

ryan = V0.232 = 0.482

Tyglie = — 0.105 = —0.324
TY1|2 = VvV 0.031 =0.176

4. The coefficients rys; and 7y2 are positive because we see from Table 7.2c that
by = 0.6594 and b, = 0.2224 are . Similarly, ry3j12 is negative because
we see from Table 7.2d that b3 = —2.186 is

7.5 Standardized Multiple Regression Model*

7.6 Multicollinearity and Its Effects

1. In multiple regression analysis, some questions frequently asked:
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(a) What is the of the effects of the different predictor
variables?
(b) What is the of the effect of a given predictor variable on the

response variable?

(c) Can any predictor variable be from the model because it has

little or no effect on the response variable?

(d) Should any predictor variables not yet included in the model be considered for
?

2. In many nonexperimental situations in business, economics, and the social and

biological sciences, the tend to be among themselves

and that are related to the response variable but are not

included in the model.

3. In a regression of family food expenditures on the explanatory variables
family income, family savings, and age of head of household, the explanatory vari-

ables will be among themselves. Further, they will also be correlated

with other socioeconomic variables not included in the model that do affect family

food expenditures, such as family size.

4. When the predictor variables are correlated among themselves,

or among them is said to exist.

Uncorrelated Predictor Variables

1. (Table 7.6) The data for a small-scale experiment on the effect of work crew size

(X1) and level of bonus pay (X3) on crew productivity (Y). The predictor variables

X; and X, are uncorrelated ( ).
TABLE 7.6
Uncorrelated Bonus Pay il
Predi Case Crew Size (dollars) Crew Productivity
redictor 9 X, i i

Variables— n i2 f
Work Crew 1 4 2 42
Productivity 2 4 2 39
Example. 3 4 3 48

4 4 3 51

5 6 2 49

6 6 2 53

7 6 3 61

8 6 3 60
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2. (Table 7.7a (7.7b) (7.7c)) The fitted regression function and the analysis of variance
table when both X; and X5 are (only (X7) (X3) is) included in the model.

3. (Table 7.7) The regression coefficient for X, , is the
whether only X is included in the model or both predictor variables are included.

The same holds for

TABLE_7“7 (a) Regression of ¥ on X; and X;
Regression f = .375 + 5.375X; + 9.250X;
Results when I
Predictor Source of
Variables Are Variation s df Ms
Uneorelated— " Regression 402.250 2 201.125
aiaka sl Error 17.625 5 3.525
Productivity
Example. Total 419.875 7
(b) Regression of Y on X;
¥ = 23.500 + 5.375X,
Source of
Variation ss df Ms
Regression 231.125 1 231.125
Error 188.750 6 31.458
Total 419.875 7
(<) Regression of ¥ on X,
¥ = 27.250 + 9.250 X,
Source of
Variation 55 df MS
Regression 171.125 1 171.125
Error 248.750 6 41.458
Total 419.875 7
4. When the predictor variables are , the effects ascribed to them
by a first-order regression model are the no matter which other of these

predictor variables are included in the model.

5. The extra sum of squares SSR(X;|X5) equals the regression sum of squares SSR(X7)

when only X, is in the regression model:

SSR(X1[Xs) =

SSR(X)) =
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6. Similarly, the extra sum of squares SSR(X5|X;) equals SSR(X3), the regression

sum of squares when only X5 is in the regression model:

SSR(X,) =

7. In general, when two or more predictor variables are uncorrelated, the

of one predictor variable in reducing the error sum of squares

when the other predictor variables are in the model is as

when this predictor variable is in the model alone.

8. See Comment on page 281 for the proof: when X; and X, are uncorrelated,
adding X5 to the regression model does not change the regression coefficient for Xi;
correspondingly, adding X to the regression model does not change the regression

coefficient for X,.

Nature of Problem when Predictor Variables Are Perfectly Cor-

related

1. (Table 7.8) The data refer to four sample observations on a response

variable and two predictor variables. The first-order multiple regression function
fit:
E(Y) = po+ i1 X1+ f2Xo.

:;ABLE 7.8 Fitted Values for
xample of < %
Perfectly e Regression Function
Correlated i Xn Xiz Y (7.58) (7.59)
{’;‘:;;‘l‘: 1 2 6 23 23 23
. 2 8 9 83 83 83
3 6 8 63 63 63
4 10 10 103 103 103
Response Functions:
Y =-87+X,+18X, (7.58)
Y=-7+9X+2X> (7.59)

Mr. A : Y =—87+ X, +18X, (perfect fit) (7.58)
Mr. B : YV =—-7+9X, +2X, (perfect fit) (7.59)
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2. It can be shown that will fit the data in
Table 7.8 perfectly. The reason is that the predictor variables X;, and X, are

perfectly related:
Xo=5+0.5X, (7.60)

3. (Figure 7.2) The fitted response functions (7.58) and (7.59) are entirely different

response surfaces. The two response surfaces have only
when they
FIGURE 7.2
Two Response
Planes That 350
Intersect when
26
X: =5+ .5X1. .
170
>
80
-10
20

8. Two key implications of this example are:
(a) The perfect relation between X, and X, did not inhibit our ability to obtain
a to the data.

(b) Since many different response functions provide the same good fit, we cannot

anyone set of as reflecting the effects

of the different predictor variables.

Effects of Multicollinearity

1. The fact that some or all predictor variables are correlated among themselves (a)

does not, in general, inhibit our ability to obtain a (b) nor does it tend
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to affect or

provided these inferences are made within the region of observations.

2. The estimated tend to have

when the predictor variables are highly correlated. Thus, the estimated regression
coefficients tend to vary widely from one sample to the next when the predictor

variables are highly correlated.

3. Many of the estimated regression coefficients individually may be

even though a definite statistical relation exists between the re-

sponse variable and the set of predictor variables.

4. The common of a regression coefficient as measuring the change

in the expected value of the response variable when the given predictor variable
is increased by one unit while all other predictor variables are held constant is

when multicollinearity exists.

D. The Body Fat Example

(a) (Table 7.1): A sample of 20 healthy females 25 — 34 years old, Y: amount of
body fat, X;: triceps skinfold thickness, X5: thigh circumference, X3: midarm

circumference. (Table 7.2): The regression results for different fitted models.

(b) (Figure 7.3) The scatter plot matrix and the matrix of the pre-

dictor variables: predictor variables X; and X5 are highly correlated

(c) r13 = 0.458 and 793 = 0.085.

(d) The when Xj is regressed on X; and
X5 is 0.998: X3 is highly correlated with X; and X, together.

FIGURE 7.3 (a) Scatter Plot Matrix of X Variables (b) Correlation Matrix of X Variables

Scatter Plot . et

Matrix and _' .

Correlation X1 il .

Matrix of the e . M

Predictor L .

= ! 13 ¢ X2 S = | 924 1.0 .085

e 458 085 1.0

o e X3
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6. Effects on Regression Coefficients.

(a)

(b)

The regression coefficient for X, triceps skinfold thickness,

depending on which other variables are included in the model.

Variables in Model b, b,
X1 .8572 —_
X2 — .8565
X1, X2 2224 .6594
X1, X2, X3 4.334 —2.857

The story is the same for the regression coefficient for X5. The regression
coefficient b, even when X3 is added to the model that

includes X; and Xs.

Important conclusion: When predictor variables are correlated, the regression

coefficient of anyone variable which other predictor variables

are included in the model and which ones are left out. Thus, a regression coef-
ficient does not reflect any inherent effect of the particular predictor variable
effect, given

on the response variable but only a or

whatever other correlated predictor variables are included in the model.

7. Effects on Extra Sums of Squares.

(a)

(111-2) Regression Analysis (I)

When predictor variables are correlated, the marginal contribution of anyone
predictor variable in reducing the error sum of squares , depend-
ing on which other variables are already in the regression model, just as for

regression coefficients.

(Table 7.2) Consider the following extra sums of squares for X;:

SSR(X)) = 35227  SSR(X)|X,) = 3.47.

The reason why SSR(X;|X2) is so small compared with SSR(X;) is that
X, and X, are

variable.

with each other and with the response

When X, is already in the regression model, the marginal contribution of X,

in reducing the error sum of squares is because X,

contains much of the as X;.
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(d) The same story is found in Table 7.2 for X,. Here SSR(X»|X;) =
which is much smaller than SSR(X,) =

(e) Important conclusion: When predictor variables are correlated, there is
sum of squares that can be ascribed to anyone predictor variable
as reflecting its effect in reducing the total variation in Y. The reduction in the
total variation ascribed to a predictor variable must be viewed in the context

of variables already included in the model.

8. Effects on s(by).

(a) (Table 7.2 for the body fat example) how much more the esti-

mated regression coefficients b; and by become as more predictor variables are

added to the regression model:

Variables in Model s{b1} s{bz}
X1 .1288 .
X5 —t .1100
X1, Xz 3034 2912
X1, X2, X3 3.016 2,582
(b) The of multicollinearity among the predictor variables is re-
sponsible for the of the estimated regression coeffi-

cients.
9. Effects on Fitted Values and Predictions.

(a) (Table 7.2 for the body fat example) the high multicollinearity among the pre-

dictor variables , measuring the

variability of the error terms, from being as additional

variables are added to the regression model:

Variables in Model MSE

Xi 7.95
X1, X2 6.47
X1I XZ, x3 6.15
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(b) The within the range of the observations on the

predictor variables is with the addition of correlated predictor

variables into the regression model.

(c) Consider the estimation of mean body fat when the only predictor
variable in the model is triceps skinfold thickness (X7) for X;; = 25.0. The

fitted value and its estimated standard deviation are (calculations not shown):
Y, =19.93, s(V},) = 0.632

When the highly correlated predictor variable thigh circumference (X5) is also
included in the model, the estimated mean body fat and its estimated standard

deviation are as follows for Xj; = 25.0 and X}, = 50.0:
Y, =19.36 s(Y}) = 0.624

Thus, the is equally good as

before, despite the addition of the second predictor variable that is highly

correlated with the first one.

(d) The essential reason for the is that the

is negative, which plays a strong influence to

the increase in s2(by), in determining the value of s2(Y},) as given in (6.79).
(¥} = s{bo} + X757 (b1} + Xips? (ba} + 2 X s{bo, b1}
+2Xh28{bo, b2} + 2X1 Xy, b2} 679
10. Effects on Simultaneous Tests of §,. Paradox of t-test and F-test:

(a) (The Body Fat Example) test whether and . Control-

ling the family level of significance at 0.05, we require with the

that each of the two ¢ tests be conducted with level of significance

(b) Hence, we need . Since both t* statistics in Table 7.2¢

have absolute values that do not exceed 2.46, we would conclude from the two

tests that §; = 0 and that gy = 0.

(c) (Table 7.2c) Yet the proper F test for would lead to
the that not both coefficients equal zero. We find F* =
MSR/MSE =192.72/6.47 = 29.8, which far exceeds F{g.95,217) = 3.59.
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(d)

The reason for this apparently paradoxical result is that each is

a , as we have seen in (7.15) from the perspective of the

general linear test approach.

Thus, a here indicates that X, does not provide much

additional information beyond X, which already is in the model; hence, we

are led to the conclusion that 5, = 0.

Similarly, we are led to conclude By = 0 here because is

small, indicating that X5 does not provide much more additional information

when X is already in the model.

But the two tests of the marginal effects of are not

equivalent to testing whether there is a regression relation between Y and the

two predictor variables.

The reason is that the reduced model for each of the separate tests contains the

, whereas the reduced model for testing whether

£1 = 0 and ps = 0 would contain predictor variable.
The proper F' test shows that there is a definite regression relation here between
Y and X1 and Xg.

Need for More Powerful Diagnostics for Multicollinearity

1. The diagnostic tool for identifying multicollinearity: the pairwise

between the predictor variables is frequently helpful.

2. (Chapter 10) more powerful tool for identifying the existence of serious multi-

collinearity.

3. (Chapter 11) Some remedial measures for lessening the effects of multicollinearity.

©® TA Class

e Problems: 7.2, 7.3, 7.6, 7.11, 7.24.

e Exercises: 7.31
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Regression Analysis (1)
Kutner's Applied Linear Statistical Models (5/E)

Chapter 3: Regression Models for Quantitative and Qualitative Predictors I

Thursday 09:10-12:00, BEEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University

http://www.hmwu.idv.tw

Overview

1. We consider in greater detail standard modeling techniques for

predictors, for predictors, and for regression models containing

quantitative and qualitative predictors.

2. These techniques include the use of and terms
for quantitative predictors, and the use of for qualitative
predictors.

8.1 Polynomial Regression Models

1. The polynomial regression models for quantitative predictor variables are among

the most frequently used models in practice because they

are handled easily as a special case of the general linear regression model (6.7).

2. We discuss several commonly used polynomial regression models.

3. Then we present a case to illustrate some of the major issues encountered with

polynomial regression models.
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Uses of Polynomial Models

1. Polynomial regression models have two basic types of uses:

(a) When the true curvilinear response function is a polynomial func-

tion.

(b) When the true curvilinear response function is

but a polynomial function is a good to the true function.

One Predictor Variable - Second Order

1. Polynomial regression models may contain one, two, or more than two

. Further, each predictor variable may be present in

2. Considering a polynomial regression model (called a with

one predictor variable):

Y; = Bo + Bra; + B} + & (8.1)
or
(8.2)
where: x; =
3. Note that the predictor variable is -in other words, expressed as a

deviation around its mean X - and that the ith centered observation is denoted by

€.

4. The reason for using a centered predictor variable in the polynomial regression model
is that X and X? often will be . Centering the predictor

variable often reduces the substantially.

5. The response function for regression model (8.2) is (called a

(8.3)
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FIGURE 8.1 ¥ Y
Examples of 60 60
Second-Order
Polynomial 50 50
Response
Functions. 40 40 Efy} = 18 — 8x + 2x2
Al Ey}=52+8x—22  30F
20 20
10 10
] 1 1 1 1 1 1 1 1 1
0 -2 =i 0] i 2 X = -2 -1 0 1 2 X
(a) (b

6. The regression coefficient [y represents the mean response of Y when =z = 0, i.e.,

when

coefficient, and [y, is called the

The regression coefficient [3; is called the

coefficient.

One Predictor Variable - Third Order

1. The regression model is called a third-order model with one predictor variable

(8.5)

where z; = X; — X

. The response function for regression model (8.5) is:

(8.6)

y
RE 8.2 Y
m,-d-Order
Polyoomial
gﬁ:’oi 20+ 20
T0F Fyy = 22.45 + 1.45x + .15x2 + 3563 10
1 1 L 1
= o 2 & B
(@)
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EY} = 16.3 — 1.45x — .15x° — .35%°

1 1 B S
~2 =] 0 1 Z X
(b)
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One Predictor Variable - Higher Orders

1. Polynomial models with the predictor variable present in

should be employed with special caution. The

of the coeflicients becomes difficult for such models.

Two Predictor Variables - Second Order

1. The regression model:

(8.7)
where z;; = X1 — X1, Tio = X2 — Xo.
2. The response function is:
(8.8)
3. Note that regression model (8.7) contains separate and
components for each of the two predictor variables and a term.

4. The latter represents the interaction effect between X; and X5. The coefficient (315
is often called the

FIGURE 8.3 Example of a Quadratic Response Surface—E({Y} =1,740 — 4x{ — 3x} — 3x,x,.
(2) Response Surface (b) Contour Curves

-10 -5
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1600 | ""
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EKY)
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Three Predictor Variables - Second Order*

Implementation of Polynomial Regression Models*

Case Example

1. Setting. A researcher studied the effects of the charge rate and temperature on

the life of a new type of power cell in a preliminary small-scale expetiment. The
charge rate (X;) was controlled at three levels (0.6, 1.0, and 1.4 amperes ( &Z1¥))
and the ambient temperature (Xy) was controlled at three levels (10, 20, 300C).

Factors pertaining to the discharge of the power cell were held at fixed levels. The

life of the power cell (Y') was measured in terms of the number of discharge - charge

cycles that a power cell underwent before it failed.

2. Model to be Considered. (Table 8.1) The data obtained in the study are con-

tained in Table 8.1, columns 1-3. The researcher was not sure about the nature

of the response function in the range of the factors studied. Hence, the researcher

decided to fit the second-order polynomial regression model (8.7):

2 2
P = i 3 il i2 i1d4g i .
Y = Bo + Bixzia + Pazio + Bz + Boxiy + PraxinTio + € (8.13)
for which the response function is:
2 2
E{Y} = Bo + Bra1 + Poxa + frixi + Pogy + Sroxi12o (8.14)
TABLE 8.1 Data—Power Cells Example.
m ) 3) (4 5 (6) @ ®)
Number of Charge
Cell Cycles Rate Temperature Coded Values
i Y; Xn Xiz Xi Xiz ' x4 XnXp
1 150 .6 10 -1 —1 1 1 1
2 86 1.0 10 0 -1 0 1 0
3 49 1.4 10 1 -1 1 1 -1
4 288 .6 20 -1 0 1 0 0
5 157 1.0 20 0 0 0 0 0
6 131 1.0 20 0 0 0 0 0
7 184 1.0 20 0 0 0 0 0
8 109 1.4 20 1 0 1 0 0
9 279 .6 30 -1 1 1 1 -1
10 235 1.0 30 0 1 0 1 0
11 224 1.4 30 1 1 1 1 1
X, =1.0 X, =20
Setting adapted Irom: S. M. Sidik. H. F. Leibecki. and J. M. Bozek, Cycies Till Fuilure of Sitver-Zine Cells with Competing Faiiure Modes intinary Daier

Analvsis. NASA Technical Memorandum 815-56, 1980
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3. Coded Variables. Because of the balanced nature of the X; and X, levels studied,
the researcher not only centered the variables X; and X5 around their respective

means but also scaled them in convenient units, as follows:

Xo—X1  Xp—10
04 04

Tz = 10 10

Tyl =

(a) Here, the denominator used for each predictor variable is the absolute difference

between of the variable.

(b) These centered and scaled variables are shown in columns 4 and 5 of Table
8.1. Note that the codings defined in (8.15) lead to simple coded values, -1,
0, and 1. The squared and cross-product terms are shown in columns 6-8 of
Table 8.1.

(c) Use of the coded variables z; and x5 rather than the original variables X; and

X between the first power and second power

terms markedly. Low levels of can be helpful in avoiding

computational inaccuracies.

Correlation between Correlation between
X1 and X3: 991 X, and X3: .986
xiand xf: 0.0 xand x3: 0.0
(d) The researcher was particularly interested in whether effects
and effects are required in the model for the range of the X

variables considered.

4. Fitting of Model. (Figure 8.4) contains the basic regression results for the fit of
model (8.13) with the SAS regression package. The

Y = 162.84 — 55.83z + 75.5025 + 27.3927 — 10.6122 + 1150z, (8.16)
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Model: MODEL1
FIGURE 8.4 Dependent Variable: Y
SAS
Regression Analysis of Variance
Output for i of Mz
Second-Order Scurce DF Squares Square F Value Prob>F
P jal
Olynﬁml Model 5 55365.56140 11073.11228 10.565 0.0109
Model Error 5 5240.43860 1048.08772
(8.13)—Power C Total 10 60606. 00000
Cells Example. Root MSE 32.37418 R-square 0.9135
Dep Mean 172.00000 Adj R-sq 0.8271
C.V. 18.82220
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |TI
INTERCEP 1 162.842105 16.60760542 9.805 0.0002
X1 1 -55.833333 13.21670483 -4.224 0.0083
X2 1 75.500000 13.21670483 5¥712 0.0023
X18Q 1 27.394737 20.34007956 1.347 0.2359
X2s50Q 1 -10.605263 20.34007956 -0.521 0.6244
X1X2 1 11.500000 16.18709146 0.710 0.5092
Variable DF Type I SS
INTERCEP 1 326424
X1 1 18704
X2 1 34202
X15Q 1 1645.966667
X25Q 1 284.928070
X1X2 1 529.000000

5. Residual Plots. (Figure 8.5) None of these plots suggest any gross inadequacies of
regression model (8.13). The coefficient of correlation between the ordered residuals
and their expected values under normality is 0.974, which supports the assumption

of normality of the error terms.

FIGURE 8 5 (2) Residual Plot against ¥ (b) Residual Plot against x,
piagnostic 60 - 60
Resi
WET P
cills Example. 40 40 .
5 20f . 5 20f .
°
2 ® e ° % 8 .
& ok o ok
° °
20 e ° —20F 8
L] L]
L ] [ ]
—40 ] 1 I —40 1 1 L J
0 100 200 300 -2 =1 0 i 2
Fitted Xi
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(©) Residual Plot against x; (d) Normal Probability Plot
60 50
[ ]
40 - . 30
[}
= 20} ° = 10F e’
3 ® =1
2 : o 2
€ o} & _10} *
Q
e ®
[ ]
20} . ® —30Ie
e
L ]
—40 I ] 1 ] —-50 1 ] 1 ] 1 |
=2 -1 0 i 2 —60 —40 —-20 0 20 40 60
X2 Expected

6. Test of Fit. Since there are three replications at x; = 0, x5 = 0, another indication
of the adequacy of regression model (8.13) can be obtained by the formal test in
(6.68) of the of the regression function (8.14).

(a) The pure error sum of squares (3.16):
SSPE = (157 — 157.33)% + (131 — 157.33)% + (184 — 157.33)% = 1,404.67

Since there are ¢ = 9 distinct combinations of levels of the X variables here,

there are n — ¢ = 11 — 9 = 2 degrees of freedom associated with SSPE.

(b) (Figure 8.4) SSE = 5,240.44. Hence the lack of fit sum of squares (3.24) is:

SSLF = = 3,835.77

with which ¢ — p = 9 — 6 = 3 degrees of freedom are associated. (p = 6

regression coefficients in model (8.13) had to be estimated.)

(c) Hence, test statistic (6.68b) for testing the adequacy of the regression function
(8.14) is:

F* =

(d) For a = 0.05, we require . Since F* = 1.82 < 19.2, we
conclude according to decision rule (6.68c) that the second-order polynomial

regression function (8.14) is a good fit.
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7. Coefficient of Multiple Determination. (Figure 8.4) : the

variation in the lives of the power cells is reduced by about 91 percent when the

first-order and second-order relations to the charge rate and ambient temperature

are utilized. The adjusted

8. Partial F Test. Whether a first-order model would be sufficient? The test alter-

natives are:

Hy: , H, : not all Bs in Hy equal zero

(a) The partial F test statistic (7.27) here is:

F* =

(b) (Figure 8.4) SSR(x1) = 18,704, SSR(xs|z1) = 34,202. The required extra

sum of squares is therefore obtained:

SSR(x%,arg,xlxﬂxl,xg) =

(c¢) (Figure 8.4) MSE = . Hence the test statistic is:
F* =
(d) For level of significance a = 0.05, we require . Since
F* = 0.78 < 5.41, we conclude , that no curvature and interaction
effects are needed, so that a for the range

of the charge rates and temperatures considered.

9. First-Order Model. On the basis of this analysis, the researcher decided to con-

sider the first-order model:
Yi = 8o+ Brza + Pazin + & (8.17)
(a) A fit of this model yielded the estimated response function:

~

Y =172.00 — 55.83%; + 7550z, (8.18) s(by) = 12.67, s(by) = 12.67.
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(b) A variety of for this first-order model were made and ana-

lyzed by the researcher (not shown here), which confirmed the appropriateness
of first-order model (8.17).

10. Fitted First-Order Model in Terms of X. The fitted first-order regression
function (8.18) can be transformed back to the by utilizing
(8.15). We obtain:

(8.19)

(Figure 8.6) contains an S-Plus regression-scatter plot of the fitted response plane.

The researcher used this for investigating the effects of

charge rate and temperature on the life of this new type of power cell.

FIGURE 8.6
S-Plus Plot of
Fitted
Response Plane
(8.19)—Power
Cells Example.

11. Estimation of Regression Coefficients. The researcher wished to estimate the

of the two predictor variables in the first-order model, with a 90

percent family confidence coefficient, by means of the Bonferroni method.

(a) Joint Inferences (page 228) The can

be used to estimate several regression coefficients simultaneously. If g param-
eters are to be estimated jointly (where g < p), the confidence limits with

family confidence coefficient 1 — « are:

, where (6.52)

(b) Here, g = 2 statements are desired; hence, by (6.52a), we have:

B =

(111-2) Regression Analysis (I) January 24, 2023
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(¢) The estimated standard deviations of b; and by in (8.18) apply to the model
in the coded variables. Since only first-order terms are involved in this fitted
model, we obtain the estimated standard deviations of b, and b, for the fitted

model (8.19) in the original variables:

/ 1 12.67
/ 1 12.67

(d) The Bonferroni confidence limits by (6.52) therefore are —139.58 £2.306(31.68)
and 7.55 £ 2.306(1.267), yielding the confidence limits:

—212.6 < ;1 < —66.5, and 46 <[y <105

(e) With confidence 90%, we conclude that the mean number of charge/discharge

cycles before failure with a unit increase in

the charge rate for given ambient temperature, and

with a unit increase of ambient temperature for given charge rate.

(f) The researcher was satisfied with the precision of these estimates for this initial

small-scale study.

Some Further Comments on Polynomial Regression

8.2 Interaction Regression Models*

8.3 Qualitative Predictors

1. Examples of predictor variables are gender (male, female), purchase

status (purchase, no purchase), and disability status (not disabled, partly disabled,
fully disabled).

2. In a study of innovation in the insurance industry, an economist wished

to relate the speed with which a particular insurance innovation is adopted (Y') to

the size of the insurance firm (X;) and the type of firm (X5).

(a) Y: the number of months elapsed between the time the first firm adopted the

innovation and the time the given firm adopted the innovation.
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(b) Xj: size of firm, is quantitative, and is measured by the amount of total assets
of the firm.

(¢) Xy: type of firm, is qualitative and is composed of two classes — stock compa-

nies and mutual companies.

In order that such a qualitative variable can be used in a regression model,

for the classes of the qualitative variable must be employed.

Qualitative Predictor with Two Classes

1. We shall use indicator variables that take on the to quantify a

qualitative variable.

2. For the insurance innovation example, where the qualitative predictor
variable has two classes, we might define two indicator variables X5 and Xj:

1 if stock company
X2 -
0 otherwise

X3:

1 if mutual company
0 otherwise

3. A first-order model:

(8.31)

4. This intuitive approach of setting up an indicator variable for each class of the

qualitative predictor variable unfortunately leads to

matrix does not have an and no unique estimators of the

regression coefficient can be found (see details at page 314.)

5. Principle: A qualitative variable with will be represented by

indicator variables, each taking on the values 0 and 1.

6. Indicator variables are frequently also called or binary vari-

ables.
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Interpretation of Regression Coefficients

1. Returning to the insurance innovation example, suppose that we drop
the indicator variable X3 from regression model (8.31) so that the model becomes:

(8.33)
where:
X, = size of firm
1
Xy, =
{ 0
2. The response function for this regression model is:
(8.34)

(a) (Figure 8.11) Consider first the case of a mutual firm. For such a firm, X, =0

and response function (8.34) becomes:

Mutual firms (8.34a)

Thus, the response function for mutual firms is a straight line, with Y intercept

and slope

(b) For a stock firm, X» = 1 and response function (8.34) becomes:

Stock firms (8.34b)

This also is a straight line, with the same slope but with Y intercept
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316 Part Two Multiple Linear Regression

FIGURE 8.11 Number of

Illustration of Months Elapsed

Meaning of Y

Regression

Coefficients for Stock Firms Response Function:

Regression EY} = (Bo + B2) + Bi X4
Model (8.33)

with Indicator

Variable
X;—Insurance
Innovation Mutual Firms Response Function:
Example, E{Y} = Bo + B1 X4
Bo + B2 <
r Bo
0 X

Size of Firm

3. The meaning of the regression coefficients in response function (8.34)
E{Y'} = By + B1X1 + Ba X (8.34)

(a) The mean time elapsed before the innovation is adopted, , is a

linear function of size of firm (X} ), with the for both types

of firms.

(b) fo indicates the response function for

firms (coded 1) is than the one for firms (coded 0), for any given

size of firm.

(¢) P2 measures the of type of firm.

4. Why we did not simply for stock firms and mutual firms

in our example, and instead adopted the approach of

with an . There are two reasons:

(a) Since the model assumes and the
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for each type of firm, the common slope

ing the two types of firms.

(b) Also, other inferences, such as for 3y and 35, can be made more

can best be estimated by pool-

by working with one regression model containing an indicator variable since

will then be associated with

Example: the insurance innovation example

1. (Table 8.2) In the insurance innovation example, the economist studied 10 mutual

firms and 10 stock firms Note that X5 = 1 for each stock firm and X5 = 0 for each

mutual firm.

TABLE 8.2
Data and
Indicator Firm
Coding— i
Insurance
Innovation 1
Example. 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

) 2) 3
Number of Size of Firm ®
Months Elapsed  (million dollars)  Type of
¥; Xi Firm
17 151 Mutual
26 92 Mutual
21 175 Mutual
30 31 Mutual
22 104 Mutual
0 277 Mutual
12 210 Mutual
19 120 Mutual
4 290 Mutual
16 238 Mutual
28 164 Stock
15 272 Stock
11 295 Stock
38 68 Stock
31 85 Stock
21 224 Stock
20 166 Stock
13 305 Stock
30 124 Stock
14 246 Stock

(4) 5)
Indicator
Code
X/z XH XiZ
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 164
1 272
1 295
1 68
1 85
1 224
1 166
1 305
1 124
1 246

2. (Table 8.3) The fitted response function is:
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TABLE_8‘3 (a) Regression Coefficients

Regression

Results for Fit Regression Estimated Estimated

of Regression Coefficient Regression Coefficient Standard Deviation t*

i“:;"‘l‘:;lgsf3)_ fo 33.87407 1.81386 18.68
C B —-.10174 .00889 -11.44

Tunovation B 8.05547 1.45911 5.52

Example. ; - : N

(b) Analysis of Variance

Source of

Variation ss df MS
Regression 1,504.41 2 752.20
Error 176.39 17 10.38
Total 1,680.80 19

3. (Figure 8.12) contains the fitted response function for each type of firm, together

with the actual observations.

FIGURE 8.12 Y
Fitted
Regression Hor
Functions for Stock Firms Response Function:
Rézidiion 351 Y = (33.87407 + 8.05547) — .10174X,;
Model (8.33)—
Insurance
Tanicvation 5 30+ Mutual Firms Response Function:

o = _
Hidmpic: g Y = 33.87407 — .10174X,

S 25+

N =

IS

[}

= 20

o]

@

Ne]

E 15|

3

z

10 -
5 | ® Stock Firm
O Mutual Firm
] 1 1 1 1 O |
0 50 100 150 200 250 300 Xq
Size of Firm

4. The economist was most interested in the effect of type of firm (X3) on the elapsed
time for the innovation to be adopted and wished to obtain a 95 percent confidence

interval for 3.
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(a)

(b)

We require t(g75,17y = 2.110 and obtain from the results in Table 8.3 the

confidence limits

The confidence interval for (3, therefore is:
4.98 < By < 11.13

Thus, with 95 percent confidence, we conclude that stock companies tend to

adopt the innovation somewhere between , on the

average, than mutual companies

A formal test of:
Hy:8,=0 H,:B;,#0
with level of significance 0.05 would lead to , that type of firm has an ef-

fect, since the 95 percent confidence interval for [,

Qualitative Predictor with More than Two Classes
1. Consider the regression of tool wear (Y) on tool speed (X;) and tool

model, where the latter is a qualitative variable with four classes (M1, M2, M3, M4):

X2 -
0 otherwise

{ 1 if tool model M1
0 otherwise

{ 1 if tool model M2
X3 =

{ 1 if tool model M3
X, =

0 otherwise

2. A first-order regression model:

(8.36)

3. For this model, the data input for the X variables would be as follows:

Tool Model Xl X2 X3 X4
M1 Xa 1 0 0

M?2 Xa 0 1 0
M3 Xia 0 0 1
M4 Xa 0 0 0
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4. The response function for regression model (8.36) is:

(a)

E{Y} = B0+ 51 X1 + o X5 + B3 X5 + 01Xy (8.37)

To understand the meaning of the regression coefficients, consider first what

response function (8.37) becomes for tool models M4 for, which X, = 0,
X3 =0, and X4 = 0:

Tool models M4 (8.37a)

For tool models M1, Xo = 1, X3 = 0, and X, = 0, and response function
(8.37) becomes:

Tool models M1 (8.370)

Similarly, response functions (8.37) becomes for tool models M2 and M3:

Tool models M2 (8.37¢)

Tool models M3 (8.37d)

Response function (8.37) implies that the regression of tool wear on tool speed

is , with the for all four tool models.

The coefficients (35, (3, and (4 indicate, respectively,

the response functions for tool models M1, M2, and M3 are than the one for,

tool models M4, for any given level of

Thus, 55, 43, and 5, measure the

classes on the height of the response function for any given level of X, always

compared with the class for which

(Figure 8.13) we may wish to estimate other than

against tool models M. measures how much higher (lower) the
response function for tool models is than the response function for
tool models for any given level of tool speed, as may be seen by com-
paring (8.37c) and (8.37d). The point estimator of this quantity is, of course,

, and the estimated variance of this estimator is:

82{64 — bg} = 82{b4} + 82{b3} — 28{b4, bg} (838)

(111-2) Regression Analysis (T) January 24, 2023



Chapter 8: Regression Models for Quantitative and Qualitative Predictors Page 19/24

The needed variances and covariance can be readily obtained from the esti-

mated variance-covariance matrix of the regression coefficients.

FIGURE 8.13 Tool Wear
Ulustration of Y
Regression

Model (8.36)—

Tool Wear

Example.

Tool Models M3: E{Y} = (BO + ﬁ4) + ,B1X]

Tool Models M2: E{Y} = (By + B3) + B1 X

By
g 1
> B4 Tool Models M4: E(Y} = By + B1X;
|
B3 <
o |
0 7 Tool Models M1: E{Y} = (8y + B,) + 81X
0 X,
Tool Speed

8.4 Some Considerations in Using Indicator Variables*

8.5 Modeling Interactions between Quantitative and

Qualitative Predictors

1. [Example: the insurance innovation example} The economist actually did not begin

the analysis with regression model (8.33) because of the possibility of

between size of firm and type of firm on the response variable:

Y = Bo + 51X + B2 Xio + € (8.33)

(111-2) Regression Analysis (T) January 24, 2023



Chapter 8: Regression Models for Quantitative and Qualitative Predictors Page 20/24

2. Even though one of the predictor variables in the regression model here is qualitative,
interaction effects can still be introduced into the model in the usual manner, by

including

3. A first-order regression model with an added interaction term for the insurance

innovation example is:

(8.49)
X, = size of firm
1 if stock company
Xy =
0 otherwise
4. The response function for this regression model is:
(8.50)

Meaning of Regression Coefficients

1. (Figure 8.14) The meaning of the regression coefficients in response function (8.50)

can best be understood by examining the nature of this function for

(a) For a mutual firm, and hence . Response function

(8.50) therefore becomes for mutual firms:

Mutual films (8.50a)

(b) For stock firms, and hence . Response function

(8.50) therefore becomes for stock firms:

or

Stock films (8.500)
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FIGURE 8.14
Iustration of
Meaning of
Regression
Coefficients for
Regression
Model (8.49)
with Indicator
Variable X,
and Interaction
Term—
Insurance
Innovation
Example.

(¢) Po: indicates

Number of
Months Elapsed

Y

30+sz
> Bo

Stock Firms Response Function:

E{Y} = (Bo + B2 + (B1 + B3)X,

Mutual Firms Response Function:
E{Y} = Bo + B1X

Size of Firm

is the of the

response function for the class

class

(d) Ps: indicates

(mutual firms).

(stock firms) than that for the

is the of the re-

sponse function for the class coded 1 than that for the class coded 0.

(e) (Figure 8.14) shows that the effect of type of firm with regression model (8.49)
depends on X, the size of the firm.

i. For smaller firms, mutual firms tend to innovate more quickly.

ii. For larger firms stock firms tend to innovate more quickly.

2. When interaction effects are present, the effect of the qualitative predictor variable

can be studied only by comparing the regression functions of

the model for the

of the qualitative variable.

3. (Figure 8.15) Another possible interaction pattern for the insurance innovation ex-

ample. Here, mutual firms tend to introduce the innovation more quickly than stock
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firms in the scope of the model. but the

is than for small ones.

FIGURE 8.15 Y
Another
Ilustration of
Regression
Model (8.49)
with Indicator
Variable X,
and Interaction
Term—
Insurance
Innovation
Example.

Stock Firms

Mutual Firms

Number of Months Elapsed

Size of Firm

4. When one of the predictor variables is qualitative and the other quantitative,

that do not intersect within the scope of the model (as in

Figure 8.15) are sometimes said to represent an . When the

response functions the scope of the model (as in Figure 8.14),

the interaction is then said to be a

Example

1. [Example: the insurance innovation example} Since the economist was concerned

that interaction effects between size and type of firm may be present, the

fitted was model (8.49):

Y = Bo + 51X + BaXio + B3 XX + &
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2. The values for the interaction term X; X, for the insurance innovation example are
shown in Table 8.2, column 5, on page 317. Note that this column contains 0 for

mutual companies and X;; for stock companies.

3. (Table 8.4) the regression results of Y on X, X, , and X;X5. To test for the

presence of interaction effects:

Hy:p35=0, H,:B3#0,
the economist used the t* statistic from Table 8.4a:

=

4. For level of significance 0.05, we require £(g.975.16) = 2.120. Since

we conclude , that g3 = 0.

5. The conclusion of effects is supported by the two-sided p-value

for the test, which is very high,

TABLE 8.4
Regression (a) Regression Coefficients
(l}fe;l;l;::sri:;it Regl‘e.ssion Estimated Estimated
Model (8.49) Coefficient Regression Coefficient Standard Deviation t*
with Bo 33.83837 2.44065 13.86
Interaction B —.10153 .01305 -7.78
Term— P2 8.13125 3.65405 2.23
Insurance B3 —.0004171 .01833 —-.02
Innovation
Example. (b) Analysis of Variance

Source of

Variation AR df MS

Regression 1,504.42 3 501.47

Error 176.38 16 11.02

Total 1,680.80 19
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8.6 More Complex Models*

8.7 Comparison of Two or More Regression Func-

©

tions®

TA Class

-

.

o Problems: 8.4, 8.5, 8.15, 8.21
« Exercises: 8.33, 8.34

e Projects: 8.39
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Regression Analysis (1)
Kutner's Applied Linear Statistical Models (5/E)

Chapter Q. Model Selection and Validation I

Thursday 09:10-12:00, EEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University

http://www.hmwu.idv.tw

9.1 Overview of Model-Building Process

A strategy for the building of a regression model:

1. Data collection and

2. Reduction of explanatory or variables (for exploratory observational

studies)
3. Model refinement and

4. Model
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FIGURE 9.1

Strategy for
Building a
Regression
Model.

> C Collect data )
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on data quality

/
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> relationships and
strong interactions

Remedial
measures

FIGURE 9.1
Strategy for
Building a
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subsets of explanatory
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essential variables

!
}

Investigate curvature
and interaction

Regression
Model.

effects more fully

!

Remedial
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Study residuals and
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needed?
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model
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9.2 Surgical Unit Example

1. A hospital surgical unit was interested in predicting survival in patients undergoing

a particular type of liver operation. A random selection of 108 patients was available

for analysis. From each patient record, the following information was extracted from

the pre-operation evaluation:

X blood clotting score ([M1273 )

X, prognostic index (FEEIEE)

X3 enzyme function test score (F§IIEE)

X, liver function test score (FFINEE)

Xs age, in years

Xs indicator variable for gender (0 = male, 1 =female)

X7, Xg indicator variables for history of alcohol use:

None: X7 =0, Xg =0, Moderate: X; =1, Xg = 0,Severe:X; =0, Xg =1

2. These constitute the pool of or predictor variables for a

predictive regression model.

3. (Table 9.1) The response variable Y is , which was ascertained

in a follow-up study. A portion of the data on the potential predictor variables

and the response variable is presented in Table 9.1. These data have already been

and properly for errors.

TABLE 9.1 Potential Predictor Variables and Response Variable—Surgical Unit Example.

Blood- Alc. Alc.
Case Clotting Prognostic Enzyme Liver Use: Use: Survival
Number  Score Index Test Test Age Gender Mod. Heavy Time
i Xi Xi2 Xi3 Xis  Xis Xie Xiz Xis Y; Y =InY,
1 6.7 62 81 2.59 50 0 1 0 695 6.544
2 5.1 59 66 1.70 39 0 0 0 403 5.999
3 7.4 57 83 216 55 0 0 0 710 6.565
52 6.4 85 40 1.21 58 0 0 1 579 6.361
53 6.4 59 85 233 63 0 1 0 550 6.310
54 8.8 78 72 3.20 56 0 0 0 651 6.478

4. To illustrate the model-building procedures discussed in this and the next section,

we will use only the first four explanatory variables. We will also use only the first
54 of the 108 patients.
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5. Since the pool of predictor variables is small, a reasonably of

relationships and of possible strong interaction effects is possible at this stage of

data preparation.

(a) Stem-and-leaf plots for each of the predictor variables (not shown). These high-
lighted several cases as with respect to the explanatory variables.

The investigator was thereby alerted to examine later the of

these cases.

(b) A scatter plot matriz and the correlation matriz (not shown)

6. A first-order regression model based on all predictor variables was fitted to serve as

a starting point.

(a) (Figure 9.2a) A plot of residuals against predicted values suggests that both

and are apparent.
(b) (Figure 9.2b) the normal probability plot suggests some from
normality.
EIGURE 9.2 (a) Residual Plot for Y (b) Normal Plot for Y
Some 1000 LT T T . - 1000 - I I I I ‘ «
Preliminary
Residual
Plots—Surgical 500 o = 500 . 1
Unit Example. 5 - 3 .
< o fond Stamnl et el ) . o / .
w e N . -
e o eoe
_ ! ! I I = L L ! ! 1
o0l 0 500 1000 1500 5093 -2 -1 0 1 2 3
Predicted value Expected value
(c) Residual Plot for InY (d) Normal Plot for InY
0.6 T T T T 0.6 T T T T T~
04} - 0.4 .
= 02 f s = = 02 - .
ot R . .
g St ol el o
~0.2+ . .~ . - —02} -
LR 0.2 ’
-0.4 . e - —04 g i
I I I 1 Y ! 1 ! 1
5 5.5 6 6.5 7 7.5 -3 -2 - 0 1 2 3

Predicted value Expected value
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7. Transformation: To make the distribution of the error terms more nearly normal
and to see if the same transformation would also reduce the apparent curvature, the

investigator examined the transformation

a) (Figure 9.2¢c) A plot of residuals against fitted values when Y’ is regressed on
(a) (Fig g g

all four predictor variables in a first-order model;

(b) (Figure 9.2d) The normal probability plot of residuals for the transformed data

shows that the distribution of the error terms is more

8. (Figure 9.3) A scatter plot matriz and the correlation matriz with the transformed

Y variable.
FIGURE 9.3 Multivariate Correlations
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(a) Each of the predictor variables is with Y/, with X3

and X, showing the highest degrees of association and X; the lowest.

(b) Show among the potential predictor variables. In par-

ticular, X, has moderately high pairwise correlations with Xy, Xs, and X3

9. Various and were obtained (not shown here).

10. On the basis of these analyses, the investigator concluded to use, at this stage of

the model-building process, as the response variable, to represent

the predictor variables in linear terms, and not to include any interaction terms.

11. The next stage is to examine whether all of the variables

are needed or whether a subset of them is adequate.

9.3 Criteria for Model Selection

1. From any set of predictors, alternative models can be con-
structed. This calculation is based on the fact that each predictor can be either

included or excluded from the model.

2. (Table 9.2) the different possible subset models that can be formed

from the pool of four X variables in The Surgical Unit Example.

TABLE 9.2 SSE,, R3, R? ,, C,,AIC,, SBC,, and PRESS,, Values for All Possible Regression

a,p?

Models—Surgical Unit Example.

X m 2 3) 4) ©) (6) @) ®)
Variables

in Model p SSE, R2 RZ, C, AIC, SBC, PRESS,,
None 1 12.808 0.000 0.000 151.498 —75.703 ~73.714  13.296
X4 2 12.031 0.061 0.043 141.164 —77.079 —73.101  13.512
X5 2 9.979 0.221 0.206 108.556 —87.178 —83.200 10.744
X3 2 7.332  0.428 0.417 66.489  —103.827 —99.849 8.327
X4 2 7.409 0.422 0.410 67.715  —103.262 —99.284 8.025
X1, X, 3 9.443  0.263 0.234 102.031 —88.162 —82.195  11.062
X1, X3 3 5.781  0.549  0.531 43.852  —114.658 —108.691 6.988
X1, X4 3 7.299  0.430 0.408 67.972  —102.067 —96.100 8.472
X2, X3 3 4312  0.663  0.650 20.520 -130.483 —124.516 5.065
X2, X4 3 6.622 0.483  0.463 57.215  -107.324  -101.357 7.476
X3, X4 3 5130 0.599 0.584 33.504 121113 —115.146 6.121
X1, X2, X3 4 3.109  0.757  0.743 3.391 —146.161 —138.205 3.914
Xi Ky X, 4 6.570  0.487  0.456 58.392  —105.748 —97.792 7.903
X1, X3, X4 4 4968 0.612  0.589 32932  -120.844 —112.888 6.207
X2, X3, X4 4 3.614 0.718  0.701 11.424  -138.023  —130.067 4.597
X1, X2, X3, X4 5 3.084 0.759  0.740 5.000 —144.590 —134.645 4.069
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3. procedures, also known as subset selection or

procedures, have been developed to identify a small group of regression models that

are according to a specified criterion.

4. While many criteria for comparing the regression models have been developed, we

will focus on six:

5. We shall denote the number of potential X variables in the pool by
We assume throughout this chapter that all regression models contain an intercept
term . Hence, the regression function containing all potential X variables
contains  parameters, and the function with no X variables contains one

parameter ().

6. The number of X variables in a subset will be denoted by , as always,

so that there are parameters in the regression function for this subset of X

variables. Thus, we have: 1 <p < P.

7. We will assume that the number of observations exceeds the maximum number of

potential parameters:

R;‘; or SSE, Criterion

1. R?) criterion calls for the use of the coefficient of

2
R, =

2. Rf, indicates that there are p parameters, or X variables, in the regres-

sion function on which Ri is based.

3. The Rz27 criterion is equivalent to using the error sum of squares as the
criterion (we again show the number of parameters in the regression model as a

subscript).
4. The R]% criterion is not intended to identify the subsets that maximize this criterion.

5. We know that Rf, can never decrease as variables are included in

the model. Hence, Rf, will be a when potential X

variables are included in the regression model.
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6. The intent in using the R; criterion is to find the point where

variables is not worthwhile because it leads to a very

7. The Surgical Unit Example

(a) (Table 9.2, column 3) the R values were obtained from a series of computer

runs.

(b) For instance, when X, is the only X variable in the regression model, we

obtain:
_ SSE(Xy)

SSTO
Note that SSTO = SSE; = 12.808

Ry =1

(c¢) (Figure 9.4a) a plot of the RI% values against p, the number of parameters in

the regression model.

FIGURE 9.4 Plot of Variables Selection Criteria—Surgical Unit Example.
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2
Ra P

1.

(d) The maximum RIZ) value for the possible subsets each consisting of p — 1 pre-

dictor variables, denoted by , appears at the top of the graph

for each p. These points are connected by solid lines to show the impact of

(e) (Figure 9.4a) little increase in max(R,) takes place after three X variables are

included in the model.

(f) Hence, consideration of the subsets for which R} = 0.757 (as
shown in column 3 of Table 9.2) and for which R% = 0.718

appears to be reasonable according to the Rg criterion.

(g) Note that variables X3 and X}, correlate most with the response

variable, yet this pair does not appear together in the max(Rz) model for p = 4.

or MSE, Criterion

Since Rf, does not take account of the in the regression

model and since maX(RI%) can never decrease as p increases, the

of multiple determination R?L,p in (6.42) has been suggested as an alternative crite-

rion:

R = (9.4)

It can be seeg from (9.4) that R increases if and only if decreases

since SSTO/(n — 1) is fixed for the given Y observations. Hence, R} , and MSE,

provide information.

The largest R? for a given number of parameters in the model, max(R? ), can,
a7p a7p

indeed,

Find a few subsets for which Rz,p is at the or so the

maximum that more variables is not worthwhile.

D. The Surgical Unit Example

(a) (Table 9.2, column 4). For instance, we have for the regression model contain-

ing only Xjy:

2
Ra,Q -
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(b) (Figure 9.4b) The story told by the R2 , plot in Figure 9.4b is
to that told by the R2 plot in Figure 9.4a.

(c¢) Consideration of the subsets and appears

to be reasonable according to the RZ , criterion.

(d) Notice that is maximized for subset , and

that adding to this subset — thus using all four predictors — decreases

the criterion slightly:

Mallows’ €, Criterion*

AIC, and SBC, Criteria

1. Two popular alternatives that also provide penalties for adding predictors are

and

2. We search for models that have small values of AIC,, or SBC):
AIC, = (9.14)
SBC, = (9.15)

3. Notice that for both of these measures, the first term is nIn SSE, which

as , The second term is (for a given sample size n), and
the third term with the number of parameters,
4. Models with will do well by these criteria as long as the penalties

— 2p for AIC, and (Inn)p for SBC, — are

5. If the penalty for SBC,, is larger than that for AIC,,.

. The Surgical Unit Example

(a) (Table 9.2, columns 6 and 7) When X} is the only X variable in the regression

model:

D

AIC; = nInSSE; —nlnn+2p

SBCy = nlnSSE; —nlnn+ (Inn)p
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(b) (Figures 9.4d, e) both of AIC, and SBC, criteria are minimized for subset

PRESS, Criterion

1.

D

The criterion is a measure of how well
the use of the for a subset model can predict the

. The error sum of squares, , is also such
a measure.

The PRESS measure differs from SSFE in that each fitted value Y, for the PRESS

criterion is obtained by from the data set, estimating the
regression function for the subset model from the , and
then using the fitted regression function to obtain the predicted value for

the 7th case.

We use the notation now for the fitted value to indicate, by the first
subscript i, that it is a for the ith case and, by the second
subscript (7), that the ith case was when the regression function was
fitted.

The PRESS prediction error for the ¢th case then is:

(9.16)

and the PRESS, criterion is the sum of the squared prediction errors over all n

cases:

PRESS, = (9.17)

Models with are considered good candidate models.

The reason is that when the prediction errors Y; — }Afi(i) are small, so are the squared

prediction errors and the sum of the squared prediction errors.

. The Surgical Unit Example

(a) (Table 9.2, column 8)(Figure 9.4f) The message given by the PRESS, values
in Table 9.2 and plot in Figure 9.4f is very to that told by the

other criteria.
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(b) We find that subsets and have small PRESS

values;

(c) The set of all X variables (X7, Xs, X3, X4) involves a slightly larger PRESS
value than subset (X7, Xs, X3).

(d) The subset (Xs, X3, X4) involves a PRESS value of 4.597, which is moderately
larger than the PRESS value of 3.914 for subset (X7, Xs, X3).

9.4 Automatic Search Procedures for Model Selec-

tion
1. The number of possible models, , grows rapidly with the number of pre-
dictors.
2. A variety of procedures have been developed, e.g.,

"best” subsets regression and stepwise regression.

”Best” Subsets Algorithms

1. Time-saving algorithms require the calculation of only a of all

possible regression models.

2. For instance, the algorithms search for the five best subsets of X variables with
the smallest C), values using much less computational effort than when all possible

subsets are evaluated. These algorithms are called

3. When the pool of potential X variables is very large, say greater than 30 or 40, even

the "best” subset algorithms may require

4. As previously emphasized, our objective at this stage is not to identify

; we hope to identify a small set of for further

study.

5. The Surgical Unit Example (eight predictors), we know there are 28 = 256

possible models.
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(a) (Figure 9.5) Plots of the six model selection criteria. The best values of each

criterion for each p have been connected with lines.

(b) (Table 9.3) The overall criterion values have been underlined in

each column of the table.

TABLE 9.3
Best Variable- M 2 (3) 4) (5) (6) )
Selection p SSE, R? RZ, Cp AlC, SBC, PRESS ,
Criterion 1 12.808 0.000 0.000 240.452 —75.703 -73.714  13.296
Values— 2 7332 0.428 0417 117.409  —103.827 —99.849 8.025
Surgical Unit 3 4312  0.663 0650  50.472  —130.483 —124.516 5.065
Example. 4 2843 0.778 0.765 18914  —150.985  —143.029 3.469
5 2179 0830 0816 5751 —163.351 —153.406 2.738
6 2.082 0837 0.821 5541 —163.805  —151.871 2.739
7 2.005 0843 0.823 5787  —163.834 = —149.911 2.772
8 1.972  0.846  0.823 7.029  —162.736  —146.824 2.809
9

1.971 0.846  0.819 9.000 —160.771  —142.870 2.931

(¢) For example

i. a 7T-or 8-parameter model is identified as best by the Rip criterion (both

have )

ii. a 6-parameter model is identified by the C, criterion ( ),

iii. a 7-parameter model is identified by the AIC), criterion (
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(d)

(e)

iv. Both the SBC, and PRESS, criteria point to 5-parameter models
( and ).

(Figure 9.6) MINITAB output for the "best” subsets algorithm. We specified

that the be identified for each number of variables in

the regression model.

FIGURE 9.6 Response is 1nSurviv

MINITAB B P H
Output for lr Hi
“Best” Two °ooE Gis
Subsets for ocgnl est
Each Subset dizi =nth
Size—Surgical cnyvAdme
Unit Example. ldmegeoa
Vars R-Sq R-Sq(adj) C-p S oeererdv
1 42.8 41.7 117 .4 0.37549 X
1 42.2 41.0 119.2 0.37746 X
2 66.3 65.0 50.5 0.29079 X X
2 59.9 58.4 69.1  0.31715 X X
3 77.8 76.5 18.9 0.23845 X X X
3 75.7 74.3 25.0 0.24934 XXX
4 83.0 81.6 5.8 0.21087 X X X X
4 81.4 79.9 10.3  0.22023 XXX X
5 83.7 82.1 5.5  0.20827 X X X x4y
5 83.6 81.9 6.0 0.20931 XXX X X
6 84.3 82.3 5.8 0.20655 XXX X X X
6 83.9 81.9 7.0 0.20934 X X X XXX
7 84.6 82.3 7.0 0.20705 XXX XXXX
7 84.4 82.0 7.7 0.20867 XXXXXX X
8 84.6 81.9 9.0 0.20927 XXXXXXXX
The MINITAB algolithm uses the criterion, but also shows for each
of the "best” subsets the R, Cp, and \/MSE, (labeled S) values. The right-
most columns of the tabulation show the in the subset.

According to the Rivp criterion, the 7-parameter model based on all predictors

except (X4) and (history of moderate alcohol use
X7), or the 8-parameter model based on all predictors except (Xy)
are best.

(g) The R, criterion value for both of these models is

6. The

leads to the identification of a small

number of subsets that are "good” according to a specified criterion.

7. Consequently, one may wish at times to consider in

evaluating possible subsets of X variables.
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8. Once the investigator has identified a few "good” subsets for intensive examina-
tion, a final choice of the model variables must be made. This choice is aided by

(and other to be covered in Chapter 10)

and by the investigator’s of the subject under study, and is finally

confirmed through studies.

Stepwise Regression Methods

1. When the pool of potential X variables contains 30 to 40 or even more variables,

use of a "best” subsets algorithm may not be

2. An search procedure that develops the "best” subset of X vari-
ables may then be helpful. The

procedure is probably the most widely used of the automatic search methods.

3. Essentially, the forward stepwise search method develops

, at each step or an X variable. The cri-

terion for adding or deleting an X variable can be stated equivalently in terms of

, coefficient of partial correlation, statis-

tic, or statistic.

4. An essential difference between stepwise procedures and the "best” subsets algo-
rithm is that stepwise search procedures end with the identification of a
regression model as "best.” With the "best” subsets algorithm, regres-

sion models can be identified as "good” for final consideration.

Forward Stepwise Regression

We shall describe the forward stepwise regression search algorithm in terms of the

(2.17) and their associated for the usual tests of regression parameters.

1. The stepwise regression routine first fits a model for

each of the p — 1 potential X variables. For each SLR model, the t* statistic for

testing whether or not the slope is zero is obtained:
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(a) The X with the value is the candidate for first

If this t* value exceeds a , or if the corresponding

P-value is less than a predetermined «, the X variable is

(b) Otherwise, the program terminates with considered suffi-

ciently helpful to enter the regression model.

2. Assume X5 is the variable entered at step 1. The stepwise regression routine now

fits all regression models with , where X7 is one of the pair.

(a) For each such regression model, the corresponding to the

newly added predictor X} is obtained.

(b) This is the statistic for testing whether or not when

are the variables in the model.

(¢) The X variable with the value-or equivalently, the

is

the candidate for addition at the second stage.

(d) If this t* value exceeds a predetermined level (i.e., the P-value falls below a
predetermined level), the second X variable is . Otherwise, the

program terminates.

3. Suppose X3 is added at the second stage. Now the stepwise regression routine
examines whether any of the other X variables should
be

(a) There is at this stage only one other X variable in the model, X7 , so that only

one t* test statistic is obtained:
i =

(b) At later stages, there would be a number of these t* statistics, one for each of

the variables in the model

(¢) The variable for which this (or equivalently the vari-

able for which the P-value is largest) is the candidate for

(d) If this ¢* value falls below-or the P-value exceeds-a predetermined limit, the

variable is dropped from the model; otherwise, it is
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4. Suppose X7 is retained so that both X3 and X; are now in the model.

(a) The stepwise regression routine now examines which X variable is the next

candidate for

(b) Then examines whether any of the variables

now be dropped.

should

(¢) And so on until no further X variables can either be added or deleted, at which

point the search

5. Note that the stepwise regression algorithm allows an X variable, brought into the

model at an

stage, to be dropped subsequently if it is

in conjunction with variables added at later stages.

Example

(Figure 9.7) MINITAB computer printout for the forward stepwise regression procedure

for The Surgical Unit Example.

variable is 0.10 and the minimum acceptable a limit for

FIGURE 9.7
MINITAB
Forward
Stepwise
Regression
Output—
Surgical Unit
Example.

(111-2) Regression Analysis (I)

Alpha-to-Enter: 0.1

Alpha-to-Remove: 0.15

The maximum acceptable a limit for a

a variable is 0.15.

Response is InSurviv on 8 predictors, with N = 54

Step
Constant

Enzyme
T-Value
P-Value

ProgInde
T-Value
P-Value

Histheav
T-Value
P-Value

Bloodclo
T-Value
P-Value

S
R-Sq
R-Sq(adj)
C-p

1
5.264

0.0151
6.23
0.000

0.375
42.76
41.66
117.4

2
4.351

0.0154
8.19
0.000

0.0141
5.98
0.000

0.291
66.33
65.01

50.5

3
4.291

0.0145
9.33
0.000

0.0149
7.68
0.000

0.429
5.08
0.000

0.238
77.80
76.47

18.9

4
3.852

0.0155
11.07
0.000

0.0142
8.20
0.000

0.353
4.57
0.000

0.073
3.86
0.000

0.211
82.99
81.60

5.8
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1. At the start of the stepwise search, is in the model so that the
model to be fitted is Y; = By + €;;.

(a) (Step 1), the statistics and corresponding P-values are calculated for

each potential X variable, and the predictor having the

( ) is chosen to enter the equation.

(b) Enzyme (X3) had the largest test statistic:

by 0.015124

= = =
P s{bs}  0.002427

(¢) The P-value for this test statistic is , which falls below the maximum

acceptable a-to-enter value of 0.10; hence Enzyme (X3) is added to the model.

(d) The current regression model contains Enzyme (X3), "Step 1”: the regression
coefficient for Enzyme (0.0151).

(e) At the bottom of column 1, a number of variables-selection criteria, including
R?(42.76), R2,(41.66), and C(117.4) are also provided.

2. Next, all regression models containing X3 and variable are fitted,

and the t* statistics calculated:

* .
t, = , since ,

Progindex (X3) has the highest t* value, and its P-value (0.000) falls below 0.10, so

that Xy now enters the model.

3. Enzyme and Progindex (X3 and X,) are now in the model. At this point, a
test whether should be dropped is undertaken, but because

the (0.000) corresponding to X3 is not above 0.15, this variable is

4. Next, all regression models containing X5, X3, and one of the remaining potential

X variables are fitted. The appropriate t* statistics:

ty, =

The predictor labeled Histheavy (X3) had the largest ¢* value, (P-value = 0.000)

and was next added to the model. X5, X5 , and Xg are now in the model.
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5. Next, a test is undertaken to determine whether

Since both of the corresponding P-values are less than 0.15, neither predictor is

dropped from the model.

6. (Step 4) Bloodclot (X;) is added, and no terms previously included were dropped.
The right-most column of Figure 9.7 summarizes the addition of variable X; into

the model containing variables X5, X3, and Xg.

7. Next, a test is undertaken to determine whether either should

be dropped. Since all P-values are less than 0.15 (all are 0.0(0), all variables are

retained.

8. Finally, the stepwise regression routine considers adding one of X, , X5, Xg , or X5
to the model containing X, Xs, X3, and Xg. In each case, the P-values are greater
than 0.10 (not shown); therefore, no additional variables can be added to the model

and the search process is terminated.

9. Thus, the stepwise search algorithm identifies as the "best”
subset of X variables. This model also happens to be the model identified by both

the and criteria in our previous analyses based on an

assessment of "best” subset selection.

Other Stepwise Procedures

1. Forward Selection. The forward selection search procedure is a simplified version of

forward stepwise regression, whether a variable once entered
into the model should be

2. Backward Elimination. The backward elimination search procedure is the

selection.

(a) It begins with the model containing potential X variables and identi-

fies the one with the largest P-value.

(b) If the maximum P-value is greater than a predetermined limit, that X variable

is dropped.
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(¢) The model with the remaining (P — 2) X variables is then fitted, and the next
candidate for dropping is identified.

(d) This process continues until no further X variables can be dropped.

9.5 Some Final Comments on Automatic Model Se-

lection Procedures®

9.6 Model Validation

1. The final step in the model-building process is the of the selected

regression models.

2. Model validation usually involves checking a against

Three basic ways of validating a regression model are:

(a) Collection of to check the model and its predictive ability.

(b) of results with theoretical expectations, earlier empirical re-

sults, and simulation results.

(c) Useofa to check the model and its

3. What is difference between: training set, testing set and hold-out set: (The training

set is for )

(a) A observed data set (100%): e.g, training set (75%), testing set (25%).

(b) A observed data set (100%): k-fold cross validation: e.g, k = 4 (25%, 25%),
25%, 25%), in turns "testing set (25%), training set (75%)” 4 times.

(c) A observed data set (100%): hold-out set (20%), Not hold-out set (80% for
4-fold CV)

Collection of New Data to Check Model

1. The means of model validation is through the

The purpose of collecting new data is to be able to examine whether the regression

model developed from the earlier data is still I
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©

so, one has assurance about the of the model to data beyond

tho,se on which the model is based.

Methods of Checking Validity. A means of measuring the

of the selected regression model is to use this model to predict each case in the new
data set and then to calculate the mean of the squared prediction errors, to be

denoted by M SPR, which stands for mean squared prediction error:

MSPR =

where:

e Y is the value of the response variable in the ith

. }A/; is the for the ith validation case based on the model-

building dataset.

e n* is the number of cases in the validation data set.

If the mean squared prediction error M SPR is fairly close to based on
the regression fit to the , then the error mean square
MSE for the selected regression model is and gives an

appropriate indication of the predictive ability of the model.

If the mean squared prediction error is , one should

rely on the mean squared prediction error as an indicator of how well the selected

regression model will predict in the future.

TA Class

-

N

e Problems: 9.6, 9.11, 9.18, 9.21
« Exercises: none

e Projects: none

/
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Kutner's Applied Linear Statistical Models (5/E)

Chapter 14. Logistic Regression I

Thursday 09:10-12:00, BEEE 260205
Han-Ming Wu
Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

14.1 Regression Models with.Binary Response Vari-
able*

14.2 Sigmoidal Response Functions for Binary Re-

sponses®

14.3 Simple Logistic Regression

1. If X is a random variable with , then

and the probability mass function of this distribution

2. The logit is the logarithm of the , where m = probability of a positive

outcome (e.g., survived Titanic sinking)
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3. A formal statement of the . recall that when
the response variable is , taking on the values with proba-
bilities ~ and , respectively, Y is a Bernoulli random variable with
parameter

4. We could state the simple logistic regression model in the usual form:

5. Since the distribution of the error term ¢; depends on the distribution

of the response Y}, it is preferable to state the simple logistic regression model as:

Y; are independent Bernoulli random variables with expected values:

(14.20)

6. The X observations are assumed to be known . Alternatively, if the

X observations are random, E{Y;} is viewed as a , given the

value of X,.

Likelihood Function

1. Since each Y; observation is an ordinary Bernoulli random variable, where:
PY,=1)=m; PY,=0)=1-m; i=1---,n.
we can represent its probability distribution as follows:

. Y,=0,1, i=1,---,n. (14.21)

Note that and . Hence, f;(Y;) simply represents
the that Y; =1 or 0.
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2. Since the Y; observations are independent, their joint probability function is:

(14.22)

3. Find the maximum likelihood estimates by working with the logarithm of the joint

probability function:

mg(Yi,---,Ya) = ][ f(¥)
=1

4. Since E{Y;} = m; for a binary variable, it follows from (14.20) that:

1—m = (14.24)

5. Furthermore, from (14.18a), we obtain:

(14.25)

6. Hence, log likelihood (14.23) can be expressed as follows:

In L(ﬁo,ﬁl) = (1426)

where L(fy, f1) replaces g(Yi,---,Y,) to show explicitly that we now view this
function as the likelihood function of the parameters to be estimated, given the

sample observations.

Maximum Likelihood Estimation

1. The maximum likelihood estimates of 8y and f; in the simple logistic regression
model are those values of fy and [, that the log-likelihood function
in (14.26).

2. exists for the values of fy and (5, in (4.26) that max-

imize the log-likelihood function. Computer-intensive numerical search procedures

are therefore required to find the maximum likelihood estimates by and b.
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3. Once the maximum likelihood estimates by and b; are found, we substitute these
values into the response function in (14.20) to obtain the fitted response function.
We shall use 7; to denote the fitted value for the ith case:

4. The fitted logistic response function is as follows:

5. If we utilize the logit transformation in (14.18), we can express the fitted response

function in (14.28) as follows:

: (14.29)

We call (14.29) the

6. Once the fitted logistic response function has been obtained, the usual next steps

are to of the fitted response function and, if the

fit is good, to make a variety of

7. We shall postpone a discussion of how to examine the goodness of fit of a logistic
response function and how to make inferences and predictions until we have consid-

ered the multiple logistic regression model with a number of predictor variables.

Example

1. A systems analyst studied the effect of computer programming experience on ability
to complete within a specified time a complex programming task, including debug-
ging. Twenty-five persons were selected for the study. They had varying amounts
of programming experience (measured in months of experience), as shown in Table

14.1a column 1.

(111-2) Regression Analysis (T) January 24, 2023
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TABLE 141« [PEpmmmesmry I i i
Data and S
Maximum ) (2) ‘( 3) (.4)
Likelihood Months of Task Fitted Dev!ance
Estimates— Person Experience Success Value Residual
Programming i Xi Yi i dev;
Task Example. 1 14 0 310 —.862

2 29 0 .835 —1.899
3 6 0 110 —.483
23 28 1 .812 .646
24 22 1 621 976
25 8 1 146 1.962
(b) Maximum Likelihood Estimates
Estimated Estimated
Regression Regression Standard Estimated
Coefficient Coefficient Deviation Odds Ratio
Bo —3.0597 1.259 —
B .1615 .0650 1.175

2. All persons were given the same programming task, and the results of their success

in the task are shown in column 2. The results are coded in binary fashion: ¥ =1

if the task was completed successfully in the allotted time, and Y = 0 if the task

was not complete d successfully.

(Figure 14.5) contains a scatter plot of the data. This plot is not too informative

because of the nature of the response variable, other than to indicate that ability

to complete the task successfully appears to increase with amount of experience.

A lowess nonparametric response curve was fitted to the data and is also shown in

Figure 14.5.

(111-2) Regression Analysis (T)
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FIGURE 14.5 1.0
Scatter Plot,
Lowess Curve
(dashed line),
and Estimated
Logistic Mean
Response
Function
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4. A response function is clearly suggested by the

fit. It was therefore decided to fit the regression model
(14.20).

5. A standard logistic regression package was run on the data. The results are con-

tained in Table 14.1b. Since and , the estimated

logistic regression function:

6. This fitted value is the estimated probability that a person with 14 months experi-

ence (X; = 14) will successfully complete the programming task.

7. In addition to the lowess fit, Figure 14.5 also contains a plot of the fitted logistic

response function,

Interpretation of b,

1. The interpretation of the estimated regression coefficient b; in the fitted logistic

response function (14.30) is of the slope

in a linear regression model.

2. The reason is that the effect of a unit increase in X varies for the logistic regression

model according to the on the X scale.

(111-2) Regression Analysis (T) January 24, 2023



Chapter 14 Logistic Regression Page 7/9

3. An interpretation of b; is found in the property of the fitted logistic function that the
estimated odds are multiplied by for any unit increase
in X.

(a) Consider the value of the fitted logit response function (14.29) at X = Xj:

The notation # (X;) indicates specifically the X level associated with the fitted

value.

(b) We also consider the value of the fitted logit response function at

The difference between the two fitted values is simply:

(c) Now according to (14.29a), 7' (X;) is the logarithm of the estimated odds when
X = X;; weshall denote it by log, (odds; ). Similarly, 7' (X;-+1) is the logarithm
of the estimated odds when X = X; + 1; we shall denote it by log,(odds,).

(d) Hence, the difference between the two fitted logit response values can be ex-

pressed as follows:

log, (oddsy) — log, (odds;) =

(e) Taking of each side, we see that the estimated ratio of the odds,
called the and denoted by 5}\%, equals

(14.31)

4. The programming task example.

(a) We see from Figure 14.5 that the probability of success

with experience.

(b) Specifically, Table 14.1b shows that the odds ratio is
OR = exp(b;) = exp(0.1615) = 1.175,

so that the by 17.5 percent with

each additional month of experience.
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(c) Since a unit increase of one month is quite small, the estimated odds ratio of
1.175 may not adequately show the change in odds for a longer difference in

time. In general, the estimated odds ratio when there is a

of X is

(d) For example, should we wish to compare individuals with relatively little ex-
perience to those with extensive experience, say 10 months versus 25 months
so that ¢ = 15, then the odds ratio would be estimated to be exp[15(0.1615)] =
11.3. This indicates that the odds of completing the task increase over

for experienced persons compared to relatively inexperienced persons.

Supplementary

1. The 6 Assumptions of Logistic Regression

a) The response variable is

b) The observations are

(
(

(d) There are

(e

)
)
(¢) There is among explanatory variables.
)
)

Thereisa between explanatory variables and the

Variable.

(f) The sample size is sufficiently

2. Assumptions of Logistic Regression vs. Linear Regression: In contrast to linear

regression, logistic regression does not require:

(a) A linear relationship between the explanatory variable(s) and the response

variable.
(b) The residuals of the model to be distributed.
(¢) The residuals to have , also known as

(111-2) Regression Analysis (I) January 24, 2023
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® TA Class

4 )

e Problems: 14.7

« Exercises: none

o Projects: none
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Note: (1) Fill in your name and student ID ° (2) Answer the questions in English ° (3) Answer the questions
in the order in which they appear ° (4) Pencils are permitted for use ° (5) Hand in the question, the answer

sheets and the sketch papers ° (6) The calculation process is required.
1. (20%) Explain the following:

(a) What is the "Regression Analysis”?
(b) Let a be the level of the significance. What is the so-called ”(1 — )% Confidence Interval” for a

parameter 6 of the population.
(c) What is the "Coefficient of Determination” for a regression model? How to interpret this number?

(d) What is the "ANOVA table” for simple linear regression? What is it used for?

2. (15%) For the given sample observations {(X;,Y;),i = 1,--- ,n}, we assume a simple linear regression
model with distribution of error term unspecified as Y; = Gy + 51X; + €. Find the least squares

estimators of the parameters 8y and ;.

3. (20%) For the given sample observations {(X;,Y;),i = 1,--- ,n}, we assume a normal error regression
model as Y; = By + 61X, +¢;, where ¢; are independent normally distributed with mean 0 and variance
o2. Find the MLEs of the parameters 8y and 3.

4. (10%) Given a random sample of data, {(X;,Y;),s = 1,--- ,n}, and the level of the significance «,
describe how to conduct the two-sided test concerning whether or not there is a linear association be-
tween X and Y for a normal error regression model. (State the null hypothesis, alternative hypothesis,

test statistics (in terms of data), and decision rule.)

5. Grade point average. The director of admissions of a small college selected 120 students at random
from the new freshman class in a study to determine whether a student’s grade point average (GPA)
at the end of the freshman year (Y) can be predicted from the ACT test score (X). The results of the

study follow. Assume that a simple linear regression model is appropriate.

i 1 2 3 118 119 120
X 21 14 28 28 16 28
Y;: 3.897 3.885 3.778 3.914 1.860 2.948
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The regression analysis report conducted by R is given in Table 1.

(b) (10%) Obtain a 95 percent confidence interval for ;. Interpret your confidence interval. Does it
include zero? Why might the director of admissions be interested in whether)he confidence
interval includes zero? (tpo2s,120 = —1.97993, too5120 = —1.657651, 025119 = —1.9801,
t0.05,119 = —1.657759, 10,025,118 = —1.980272, t9.05,118 = —1.65787)

(¢) (10%) Test, using the test statistic ¢x, whether or not a linear association exists between student’s
ACT score (X) and GPA at the end of the freshman year (Y'). Use a level of significance of 0.05.

State the alternatives, decision rule, and conclusion.

(d) (5%) What is the P-value of your test in part (b)? How does it support the conclusion reached
in part (b)?

(e) (5%) How do you interpret R-squared in this analysis?
(f) (5%) The ANOVA table is shown in Table 2. How to you interpret ANOVA results?

AR
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Table 1: Regression analysis for Grade point average data

Call:
Im(formula = GPA ~ ACT, data = ex2.4.data)

Residuals:
Min 1Q Median 3Q Max
-2.74004 -0.33827 0.04062 0.44064 1.22737

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 2.11405 0.32089 6.588 1.3e-09 *x*x
ACT 0.03883 0.01277 3.040 0.00292 *x

1 ] 1o

Signif. codes: 0O ‘x*xx' 0.001 ‘#x' 0.01 ‘¥ 0.05 ‘. 0.1 "'

Residual standard error: 0.6231 on 118 degrees of freedom
Multiple R-squared: 0.07262,Adjusted R-squared: 0.06476
F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917

Table 2: Analysis of Variance Table for Grade point average data

Analysis of Variance Table

Response: GPA

Df Sum Sq Mean Sq F value Pr(>F)
ACT 1 3.588 3.5878 9.2402 0.002917 **
Residuals 118 45.818 0.3883

Signif. codes: 0 ‘xxx' 0.001 ‘xx' 0.01 ' 0.05 '." 0.1 "'
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Note: (1) Fill in your name and student ID ° (2) Answer the questions in English ° (3) Answer the questions
in the order in which they appear ° (4) Pencils are permitted for use ° (5) Hand in the question, the answer

sheets and the sketch papers ° (6) The calculation process is required. (7) Use B or X to represent a vector
B3 or a matrix X.

1. One would like to fit the simple linear regression (SLR) model to a given dataset {(Y;, X;),i = 1,--- ,n}.

(a) (10%) Write down the normal error regression model for SLR in terms of (Y;, X;).

(b) (10%) Express variables and regression coefficient by column vectors or a matrix first. And then
Express the model in matrix terms (boldface symbols).

(¢) (20%) Derive the normal equations (in matrix notation) by the method of least squares:
Q=>_[Yi—(Bo+ /X))

(d) (10%) Obtain the estimated regression coefficients (denoted by b) from normal equations by
matrix methods.

2. (20%) Use matrix methods to obtain the estimated regression coefficients for the following data:

¢\12345678910

X; |1 0 2 0 3 1 0 1 2 0
Y, |16 9 17 12 22 13 8 15 19 11
a b ] . [ d/D  —b/D ]
NOTE: If A = J then A7" = , where D = ad — be.
c

—c/D  a/D
3. ANOVA results from SLR.

(a) (15%) There are three sums of squares in ANOVA results, write down their formulas (definitions)

and derive their corresponding matrix representation. (Not just express them in matrix terms
directly.)

(b) (15%) Show that these three sums of squares are all quadratic forms.
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Note: (1) Fill in your name and student ID ° (2) Answer the questions in English ° (3) Answer the questions
in the order in which they appear ° (4) Pencils are permitted for use ° (5) Hand in the question, the answer
sheets and the sketch papers ° (6) The calculation process is required. (7) Use B or X to represent a vector

B3 or a matrix X.

1. (10%) Consider the multiple linear regression model for a given data {Y;, X;1, Xj2,- -+, Xjp}7 |, some-
one would like to perform a F-test for Lack of Fit for this model. Please state (a) the general (multiple)
linear regression model for this data; (b) the mean response function; (c¢) the test hypothesis (Hy, H,);

(d) the test statistic; and (e) the decision rule.
2. (5%) What is the extra sums of squares and what does it measure?

3. (10%) When the regression model contains three X variables, a variety of decompositions of

SSR(X1, X2, X3) into extra sums of squares can be obtained. Please give three examples.

4. (10%) Consider the first-order regression model with three predictor variables, someone would like to
use extra sums of squares in testing whether both 82 X5 and 3 X3 can be dropped from the full model.
Please state (a) the test hypothesis (Hg, H,); (b) the full model and the reduced model; (c) the general

linear test statistics; and (d) the decision rule.

5. (5%) What is the definition of the coefficient of partial determination (take R%,m as an example and

express it in terms of the extra sum of squares) and what does it measure?

6. (20%) Consider the multiple regression analysis, what is the multicollinearity problem? What are the
effects of multicollinearity when conduct the multiple regression analysis? (Hint: you cannot just say
that the multicollinearity has effects on the regression coeflicients, for example, you need to describe

what does it result in on the regression coefficients.)
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7. Commercial properties. A commercial real estate company evaluates vacancy rates, square footage,
rental rates, and operating expenses for commercial properties in a large metropolitan area in order
to provide clients with quantitative information upon which to make rental decisions. The data below
are taken from 81 suburban commercial properties that are the newest, best located, most attractive,
and expensive for five specific geographic areas. Shown here are the age (X1), operating expenses and

taxes (X2), vacancy rates (X3), total square footage (X4), and rental rates (V).

(a) (10%) Obtain the analysis of variance table that decomposes the regression sum of squares into
extra sums of squares associated with Xy; with X7 given X,; with X5 , given X1, and X4; and
with X3, given X, Xo and X4. (Hint: SSR(X4), SSR(X1|X4), )

(b) (10%) Test whether X3 can be dropped from the regression model given that X, Xo and X4 are
retained. Use the F™* test statistic and level of significance 0.01. State the alternatives, decision
rule, and conclusion. (Hint: F(0.99;1,76) = 6.980578; F'(0.99;2,76) = 4.89584; F'(0.99;3,76) =
4.050282; F'(0.99; 1, 75) = 6.985359; F'(0.99; 2, 75) = 4.899877; F'(0.99; 3, 75) = 4.054022)

(¢) (10%) Test whether both X and X3 can be dropped from the regression model given that X;
and Xy are retained; use « = 0.01. State the alternatives, and decision rule. (Hint: specify df1
and df2 in F(0.99;df1,df2) as a critical value.)

(d) (10%) Using the given R report sheet below, calculate the coefficient of partial determination
R%,zu , and interpret. (Hint: Answer "There was not sufficient information provided.” if the

information provided was not sufficient to calculate R%/2|1 1)
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> summary (m4)
Im(formula = Y ~ X4)
Coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) 1.378e+01 2.903e-01 47.482 < 2e-16 *xx*
X4 8.437e-06 1.498e-06 5.632 2.63e-07 **x*
Residual standard error: 1.462 on 79 degrees of freedom
Multiple R-squared: 0.2865, Adjusted R-squared: 0.2775
F-statistic: 31.72 on 1 and 79 DF, p-value: 2.628e-07

> summary(m14)
Im(formula = Y ~ X1 + X4)
Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 1.436e+01 2.771e-01 51.831 < 2e-16 *xx
X1 -1.145e-01 2.242e-02 -5.105 2.27e-06 *x**
X4 1.045e-05 1.363e-06 7.663 4.23e-11 **x
Residual standard error: 1.274 on 78 degrees of freedom
Multiple R-squared: 0.4652, Adjusted R-squared: 0.4515
F-statistic: 33.93 on 2 and 78 DF, p-value: 2.506e-11

> summary(m124)
Im(formula = Y ~ X1 + X2 + X4)
Coefficients:
Estimate Std. Error t value Pr(>It|)
(Intercept) 1.237e+01 4.928e-01 25.100 < 2e-16 **x*

X1 -1.442e-01 2.092e-02 -6.891 1.33e-09 *x**
X2 2.672e-01 5.729e-02 4.663 1.29e-05 *x*x*
X4 8.178e-06 1.305e-06 6.265 1.97e-08 *x*x*

Residual standard error: 1.132 on 77 degrees of freedom
Multiple R-squared: 0.583, Adjusted R-squared: 0.5667
F-statistic: 35.88 on 3 and 77 DF, p-value: 1.295e-14

> summary(m1234)
Im(formula = Y ~ X1 + X2 + X3 + X4)
Coefficients:
Estimate Std. Error t value Pr(>lt|)
(Intercept) 1.220e+01 5.780e-01 21.110 < 2e-16 *x**

X1 -1.420e-01 2.134e-02 -6.655 3.89e-09 *x*x*
X2 2.820e-01 6.317e-02 4.464 2.75e-05 *x*x*
X3 6.193e-01 1.087e+00 0.570 0.57

X4 7.924e-06 1.385e-06 5.722 1.98e-07 *x*x*

Residual standard error: 1.137 on 76 degrees of freedom
Multiple R-squared: 0.5847, Adjusted R-squared: 0.5629
F-statistic: 26.76 on 4 and 76 DF, p-value: 7.272e-14



> anova(m4)
Analysis of Variance

Response: Y

Table

Df Sum Sq Mean Sq F value Pr (>F)

X4 1 67.775
Residuals 79 168.782

Signif. codes: O

> anova(m124)
Analysis of Variance

Response: Y

67.775 31.723 2.628e-07 *x*xx
2.136

1

“sxkx’  0.001 ‘xx’ 0.01 ‘¥

Table

Df Sum Sq Mean Sq F value Pr (>F)

X1 1 14.819
X2 1 72.802
X4 1 50.287

Residuals 77 98.650

Signif. codes: 0 '

> anova(m14)
Analysis of Variance

Response: Y

14.819 11.566 0.001067 *x*

72.802 56.825 7.841e-11 *xx

50.287 39.251 1.973e-08 *x*x*
1.281

*xx'  0.001 ‘sxx" 0.01 ‘'«

Table

Df Sum Sq Mean Sq F value Pr (OF)

X1 1 14.819
X4 1 95.231
Residuals 78 126.508

1

Signif. codes: O

> anova(m1234)
Analysis of Variance

Response: Y

14.819 9.1365 0.003389 *x*
95.231 58.7160 4.225e-11 *x*x
1.622

1 1

*xx'  0.001 ‘xx' 0.01 ‘'x

Table

Df Sum Sq Mean Sq F value Pr (>F)

X1 1 14.819
X2 1 72.802
X3 1 8.381
X4 1 42.325

Residuals 76 98.231

Signif. codes: 0 '

14.819 11.4649 0.001125 *x
72.802 56.3262 9.699e-11 *x*xx
8.381 6.4846 0.012904 *
42.325 32.7464 1.976e-07 ***

1.293

I

*xx'  0.001 ‘xx'" 0.01 ‘'x



BB AAE 110 BEEE 1 B Hh=E Zaam

EZHRBEB . Regression Analysis (I) Riinl . BEfREE mENE RE
ZHHE 11 A 11 H (M) 9:10-10:30 *EBIEEYT "0, FRFT "x 1. BB EEAERAHE B -
" Book Coll ohome | 2 BIER SR -
ZlKEit%;H\: 3 _S: ’ EDFIM gﬂ 36 Calculator Dictionary P HE-EREREm
Notes Laptop | gy mmssmEImE
HiE  FREBEEE! (§1~§3) ¢} X X X K - EE
Note: (1) Fill in your name and student ID on the answer sheet ° (2) Answer the questions in English °

(3) Answer the questions in the order in which they appear ° (4) Pencils are permitted for use ° (5) Hand

in the question, the answer sheets and the sketch papers ° (6) The calculation process is required.

1. (10%) For the given sample observations {(X;,Y;),i =1,--- ,n}, we assume a normal error regression
model as Y; = By + 51X, + ¢€;, where ¢; are independent normally distributed with mean 0 and variance
o2. Find the MLEs of the parameters 3y and f3.

. Let {(X;,Y;),i =1,--- ,n} be the observed data and we would like to perform a simple linear regression

analysis. Please answer the following questions.

(a) (8%) Which plots can be used to conduct the diagnostics for predictor variable?

(b) (12%) The residuals can be used to examine six important types of departures from the simple

linear regression model with normal errors. What are those six important types of departures?

(¢) (10%) Describe the Brown-Forsythe Test with a level of significant a (including at least the

assumption for the data, the null hypothesis, the test statistics and the decision rule.)

. (25%) In the textbook, we have already learned some transformations for X and/or Y to ensure that
the assumptions for a simple linear regression normal error model are adequate. The transformations

are

loglo(X)v 1/X7 \/X,XQ,exp (X),exp (Y)710g10(Y)ﬂ 1/Y7 \/)77 Y)\'

Four real world cases given below are analyzed each by a simple linear regression normal error model.

(a) A research would like to study the regression relationship between alpha counts per second (Y')

and plutonium activity (X) to estimate the activity of plutonium in the material under study.

(b) A chemist studied the concentration of a solution (V') over time (X). Fifteen identical solutions
were prepared. The 15 solutions were randomly divided into five sets of three, and the five sets

were measured, respectively, after 1, 3, 5, 7, and 9 hours.

(c) A marketing researcher studied annual sales of a product that had been introduced 10 years ago.

The data is collected, where X is the year (coded) and Y is sales in thousands of units.

(d) In a manufacturing study, the production times for 111 recent production runs were obtained.
The data consists of records for each run the production time in hours (Y') and the production
lot size (X).
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Based on the scatterplots of Y versus X with a regression line, please indicates whether the transfor-
mations are needed for Y and/or X and conclude which transformations are possible for each case.
That is, fill in the blank spaces with the transformation methods in the following table in the answer
sheet. Mark the blank by ”x” if the transformation is not necessary. You don’t have to specify the A

value when you think the Box-Cox transformation is appropriate.

Case

Transformation of X

Transformation of Y

(a) Scatterplot of the
Solution Concentration versus Time

(b) Scatterplot of the
Solution Concentration versus Time

[Te}
- o o o
o o ] °
(o]
o _| o
5 s o
g £ o |
3 g o
2 2
<} o v |
o o -
c c
S S
5 5 24 8
[s] [s]
w )
[{e}
2 4 8
o | s °
o T T T T
2 4 6 8
Time Time
(c) Scatterplot of the (d) Scatterplot of the
Sales versus Time Production Time versus Lot Size
o
S
< (o]
(=]
3
@ v
—_ >
2 g4 g
. g
£ &7 =
= s
3 g 3
8 & 3
@ 8
3 - a
- (<]
o
S o 49
T T T T T T T
0 2 4 6 8 0 5 10 15 20 25 30
Year Lot.Size
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4. Suppose that we obtain a data set that can be expressed in the form:
{(X;,Y5):i=1,--- ,nj;5=1,---,c}, where ¢ > 2.

Someone would like to use F' test for lack of fit to determine whether a simple linear regression model

adequately fits the data, where X is the predictor variables and Y is the response.

(a) (5%) What are the assumptions of the lack of fit test?

(b) (5%) What is the full model used for the lack of fit test?

(c¢) (5%) What is the reduced model used for the lack of fit test?

(d) (5%) What is the null hypothesis for the lack of fit test?

(e) (10%) The Growth rate data are available on the effect of dietary supplement on the growth rates

of rats. Here X = dose of dietary supplement and Y = growth rate. The following table presents
the data in a form suitable for the analysis (¢ = 6,n = 12). Construct a general ANOVA Table
(including Source of Variation, Sum of Square (SS), Degree of Freedom (df), Mean Square (MS)

and F statistics) for testing lack of fit of a simple linear regression function.

Data j=1 j=2 j=3 j=4 =5 j=6
Replicate | X1 =10 Xo=15 X3=20 X4=25 X5=30 Xg=35
i=1 73 85 90 87 75 65
Y | i=2 78 88 91 86 63

i=3 91

(f) (5%) State the test statistics, decision rule and conclusion. (for all j at 5% level of significance)

(Some numbers: error sum of squares for the reduced model (SSE(R)) = 891.73, regression sum of squares (SSR)
= 204.27, total sum of squares (SSTO) = 1096.00, F(0.95;5,5) = 5.050, F(0.95;6,4) = 6.163, F(0.95;4,6) =
4.534, F(0.95;1,10), F(0.95;10,1) = 241.881, F(0.95;2,10) = 4.103, F(0.95;2,9) = 4.256, F(0.95;2,8) = 4.459;
Yij = 92.003 — 0.498X ;)

AR
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Note: (1) Fill in your name and student ID on the answer sheet ° (2) Answer the questions in English °
(3) Answer the questions in the order in which they appear ° (4) Pencils are permitted for use ° (5) Hand
in the question, the answer sheets and the sketch papers ° (6) The calculation process is required. (7) The

total is 100 points.

1. (15%) For SLR, there are three sums of squares in ANOVA results, write down their formulas (def-
initions) and derive their corresponding matrix representation. (Do not just express them in matrix

terms directly.)

2. (5%) What is the four main steps for building a regression model?

3. (10%) Describe the "Forward Stepwise Regression” procedure to a hypothesized data set with variables
{Y, X1, X, X3, X4} for selecting a good model.

see next page...
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4. (20%) Patient satisfaction. A hospital administrator wished to study the relation between patient

satisfaction (Y') and patient’s age (X1, in years), severity (BZE14) of illness (X5, an index), and anxiety

(F£2/8) level (X3, an index). The administrator randomly selected 46 patients and collected the data

presented below (not shown), where larger values of Y, X5, and X3 are, respectively, associated with

more satisfaction, increased severity of illness, and more anxiety.

(a)

(b)

(5%) Obtain the analysis of variance table that decomposes the regression sum of squares into

extra sums of squares associated with Xo; with X7 given Xo; with X3 , given X, and X;.

(5%) Test whether X3 can be dropped from the regression model given that X;, and Xy
are retained. Use the F™ test statistic and level of significance 0.025 State the alternatives,
decision rule, and conclusion. (Hint: (lower.tail) F'(0.975,1,41) = 5.4136, F'(0.975;1,42) =
5.4039, F(0.975,2, 41) = 4.0416, F(0.975, 2,42) = 4.0327)

(5%) Test whether both X9 and X3 can be dropped from the regression model given that X; are
retained; use o = 0.01. State the alternatives, and decision rule. (Hint: specify df1 and df2 in
F(0.99;df1,df2) as a critical value. Since the value of F'(0.99;df1,df2) is not given, you don’t

have to draw a conclusion.)

(5%) Using the given R report sheet below, calculate the coefficient of partial determination RY1|23

and interpret. (Hint: Answer "There was not sufficient information provided.” if the information

provided was not sufficient to calculate R%/1|23')

> anova(m2)

Analysis of Variance Table

Response:

X2

Residuals

Y
Df Sum Sq Mean Sq F value Pr(>F)

1 4860.3 4860.3 25.132 9.23e-06 **x*
44 8509.0 193.4

> anova(mi2)

Response:

X1
X2

Residuals

Y
Df Sum Sq Mean Sq F value Pr(>F)
1 8275.4 8275.4 77.1389 3.802e-11 ***
1 480.9 480.9 4.4828 0.04006 *
43 4613.0 107.3

> anova(m123)

Response:

X1
X2
X3

Residuals

Y
Df Sum Sq Mean Sq F value Pr(>F)
1 8275.4 8275.4 81.8026 2.059e-11 *x*x*
1 480.9 480.9 4.7539 0.03489 *
1 364.2 364.2 3.5997 0.06468 .
42 4248.8 101.2

Page 2/5




BB AAE 110 BEES 1 B Hie Zaam

EZ:dRB . Regression Analysis (I) Riinl . EfREE hENE: REH
ZFBEE 01 B 13 H (@) 9:10-10:40 <EBIEETT "o, BRIFT "x 1. Bt E R SRR
- Bk Coll ohome | 2+ REREAER B -
zlgﬁft%:/ﬂ\: 5E ’ Eﬂﬁ”ﬁ]\;ﬂ 36 1% Calculator Dictionary P HE-EEEREm
Notes Lavtor | gy masmensus
et IERSEEZEA! (§1~§3) 0 X X X K - R

5. (20%) Assessed valuations Assessed valuations.

A tax consultant studied the current relation

between selling price and assessed valuation of one-family residential dwellings in a large taX district

by obtaining data for a random sample of 16 recent ”arm’s-length” sales transactions of one-family

dwellings located on comer lots and for a random sample of 48 recent sales of one-family dwellings not

located on corger lots. In the data that follow, both selling price (Y) and assessed valuation (X; are

expressed in thousand dollars, whereas lot location (X32) is coded 1 for comer lots and 0 for non-comer

lots. Assume that the error variances in the two populations are equal and that a first-order regression

model with an added interaction term is appropriate.

State the estimated regression function.

Explain the meaning of all regression coefficients in the model.

Test whether the interaction term can be dropped from the model; use a = 0.05. State the

alternatives. decision rule, and conclusion. If the interaction term cannot be dropped from the

model, describe the nature of the interaction effect.

What is the predicted selling price Y when the assessed valuation X is 77.1 (thousand dollars)

for corner lots.

Call:

1m(formula =

Residuals:
Min
-10.8470

Coefficien

(Intercept
X1

X21

X1:X21

Signif. co

Residual s

Multiple R-

F-statisti

Y ~ X1 * X2, data = AssessedValuations)

1Q Median 3Q Max

-2.1639 0.0913 1.9348 9.9836

ts:
Estimate Std. Error t value Pr(>|t|)

) -126.9052 14.7225 -8.620 4.33e-12 *%x*
2.7759 0.1963 14.142 < 2e-16 **x*
76.0215 30.1314 2.523 0.01430 *
-1.1075 0.4055 -2.731 0.00828 x*x*

1 1 1 ]

des: 0 ‘xxx' 0.001 ‘%" 0.01 ‘¥ 0.05

tandard error: 3.893 on 60 degrees of freedom
squared: 0.8233, Adjusted R-squared: 0.8145
c: 93.21 on 3 and 60 DF, p-value: < 2.2e-16
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6. (10%) Peruvian Blood Pressure Data This dataset consists of variables possibly relating to blood

pressures of n = 39 Peruvians (W8 A) who have moved from rural high altitude areas to urban

lower altitude areas. The variables in this dataset are: Y = Systolic blood pressure (Systol), X; =
Age, X3 = Years in urban area, X3 = Weight (kg), X4 = Calf (/\BEHAL) skinfold, and X5 = resting

Pulse rate. Using only first-order terms for predictor variables, the various criteria values using R

for all possible regression models is given below. (a) What are the formulas of the following critera:
R, p, AIC,,SBCy, and PRESS, (b) Find just one best subset regression model according to the above

criteria and state your reasons.

6411
6481
6531

6411

4731

g DD DD W WWWWWWWWWNNDNDDNDNDDNDDNDNDNDNRE R PR

O O oo oD DD DD DD R R WWW W W W W WWNDNDDNDDND N
= B, B, O R B R R, 2, O O, kOO, Pk, O, O 0O 0O O K O Fr OO O O =
_ =, O B, B B P O, P O OO Fr PP HPH Pk OFP, OO P, O O O Fr O+ O O oN
_ O B B Bk B O O O O H P P P P OO OOOOFRr P P, O OOOF~, W
B B B2 B O P O Fr P P P P O O P, OO OO Fr B KB O FP, O O O O O = O

4756.
6120.

3783.
4370.
4739.
4750.
6070.
6073.
6120.
6312.

3755.
3772.
3782.
4359.
4370.

5992.
6035.
6073.
6269.
3740.
3755.
3770.
4359.
5950.

5
0
0
1
0
0
0
0
0
1
0
1
0
1
1
0 6448.
0
0
1
1
0
1
1
0
1
1
0
1
1
1
1
1 3739.

SSEp
056
640
.558
.452
.213
157
331
383
751
340
444
302
616
.285
660
255
562
245
345
329
.979
029
794
440
788
114
138
654
281
595
478

O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o

r2

.2718
.0629
.0184
.0077
.0000
.4208
.3309
L2744
L2726
.0706
.0701
.0629
.0335
.0184
.0127
.4250
.4224
.4209
.3326
.3309
.2755
.0826
.0759
.0701
.0401
.4274
.4251
. 4227
.3326
.0889
.4275

r2.adj

.2521
.0376
.0082
.0192
.0270
. 3886
.2937
.2341
.2322
.0190
.0185
.0109
.0202
.0361
.0422
.3758
.3729
.3713
.2754
.2735
.2134
.0040
.0033
.0096
.0422

0.3600
0.3574
0.3548
0.2540

.0183
.3407

Cp

L9711
19.
21.
22.
22.
.3855

0132
5805
1973
6364

5.5671
8.8239
8.9242

20.
20.
21.
22.
23.
23.
.1392
.2920
L3774
L4702
.5671
10.
21.
22.
22.
24.
.0056
.1382

~N N NN

5693
5967
0102
7073
5781
9079

7586
8782
2644
5967
3294

4.2751

.4696
23.
.0000

5126

AICp

191.3409 194.
201.1785 204.
202.9895 206.
203.4124 206.
203.7107 207.
184.4154 189.
190.0423 195.
193.2039 198.
193.2974 198.
202.8567 207.
202.8767 207.
203.1764 208.
204.3830 209.
204.9879 209.
205.2146 210.
186.1266 192.
186.3060 192.
186.4059 193.
191.9441 198.
192.0422 198.
195.1429 201.
204.3503 211.
204.6341 211.
204.8766 211.
206.1175 212.
187.9691 196.
188.1254 196.
188.2862 196.
193.9435 202.
206.0797 214.
189.9624 199.

SBCp
6680
5057
3167
7395
0378
4060
0329
1946
2880
8474
8673
1671
3737
9786
2053
7809
9602
0602
5983
6965
7972
0046
2884
5309
7718
2869
4432
6040
2613
3975
9438

PRESSp

5182.
6744 .
7521.
7579.
7866 .
4549.
5470.
5424 .
5663.
7341.
7389.
7662.
8276.
8753.
8350.
4933.
4708.
4955.
5986.
5727.
5904.
8040.
7986.
8554.
9148.
5112.
5373.
5105.
6255.
8804.
5545.

089
847
225
467
668
213
343
335
745
404
767
934
004
436
733
377
035
800
127
281
062
035
608
830
679
528
499
065
259
993
949
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7. (20%) Toxicity experiment. In an experiment testing the effect of a toxic substance, 1,500 exper-
imental insects were divided at random into six groups of 250 each. The insects in each group were
exposed to a fixed dose of the toxic substance. A day later, each insect was observed. Death from
exposure was scored 1, and survival was scored 0. The results are shown below; X; denotes the dose
level (on a logarithmic scale) administered to the insects in group j and Y; denotes the number of in-

sects that died out of the 250 (n;) in the group. The estimated proportions is denoted by p; = Y ;/n;.

o 1 2 3 4 5 6
X;; 1 2 3 4 5 6
nj: 250 250 250 250 250 250
Y; 28 53 93 126 172 197

Simple Logistic regression model is assumed to be appropriate. The R output for the logistic regression

is given below.

a) State the fitted logistic response function.

(
(b
(c

(d) What is the estimated median lethal dose-that is, the dose for which 50 percent of the experimental

Obtain exp(b;) and interpret this number.
What is the estimated probability that an insect dies when the dose level is X = 3.57

)
)
)
)

insects are expected to die?

Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) -2.67466 0.08285 -32.28 5.49e-06 *x*x

0.67908 0.02128 31.92 5.74e-06 *x*x

Signif. codes: 0 ‘sxx' 0.001 ‘xx' 0.01 ¥ 0.05 ‘." 0.1 " 1

Residual standard error: 0.089 on 4 degrees of freedom
Multiple R-squared: 0.9961, Adjusted R-squared: 0.9951
F-statistic: 1019 on 1 and 4 DF, p-value: 5.743e-06

== .
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