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Regression Analysis (I)
Kutner’s Applied Linear Statistical Models (5/E)

Chapter 1: Linear Regression with One Predictor Variable

Thursday 09:10-12:00, 商館 260205
Han-Ming Wu

Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

Overview
1. Regression analysis (迴歸分析) is a statistical methodology that utilizes the

relation between two or more quantitative variables so that a response
or outcome variable can be predicted from the other, or others.

2. Examples: general form of a regression model Y = f̂(X1, X2, · · · , Xp) :

(a) Y : the sales of a product, X: the amount of advertising expenditures (支出).

(b) Y : the performance of an employee on a job, X: a battery of aptitude tests
(能力傾向成套測驗, 性向測驗).

(c) Y : the size of the vocabulary of a child, X1: age of the child, X2: amount of
education of the parents.

(d) Y : the length of hospital stay of a surgical patient, X1: the time in the hospital,
X2: the severity of the operation.

3. In this chapter, we consider the basic ideas of regression analysis and discuss the
estimation of the parameters of regression models containing a single predictor

variable.
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1.1 Relations between Variables

Functional Relation between Two Variables

1. A functional relation between two variables is expressed by a mathematical
formula. If X denotes the independent variable and Y the dependent
variable, a functional relation is of the form:

Y = f(X)

2. Example: Y : dollar sales of a product sold at a 昀椀xed price, X: the number of units
sold. If the selling price is $2 per unit, the relation is expressed by the equation:
Y = 2X .

Statistical Relation between Two Variables

1. In general, the observations for a statistical relation do not fall directly on the
curve of relationship.

2. Example 1: Performance evaluations

(a) Performance evaluations for 10 employees were obtained at midyear (X) and
at year-end (Y ).

(b) Figure l.2a: the higher the midyear evaluation, the higher tends to
be the year-end evaluation.

(c) Figure 1.2b: a line of relationship that describes the statistical relation
between midyear and year-end evaluations.
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(d) Note: that most of the points do not fall directly on the line of statisti-
cal relationship. This scattering of points around the line represents

variation in year-end evaluations that is not associated with midyear per-
formance evaluation and that is usually considered to be of a random nature .

3. Example 2:

(a) The data on age and level of a steroid (類固醇) in plasma (血漿) for 27 healthy
females between 8 and 25 years old. (Figure 1.3)

(b) The data strongly suggest that the statistical relationship is curvilinear
(not linear).

(c) As age increases , steroid level increases up to a point and then
begins to level o昀昀 .
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1.2 Regression Models and Their Uses

Historical Origins

1. Regression analysis was 昀椀rst developed by Sir Francis Galton in the latter part
of the 19th century .

2. Galton had studied the relation between heights of parents and children and
noted that the heights of children of both tall and short parents appeared to

”revert” (回復) or ”regress” (回歸) to the mean of the group .

3. He considered this tendency to be a regression to ”mediocrity.”

4. Galton developed a mathematical description of this regression tendency , the
precursor of today’s regression models.

5. The term regression persists to this day to describe statistical relations between variables .'

&

$

%

☺ 行銷資料科學: 小時了了，大未必佳 � 迴歸均值的有趣現象:
https://medium.com/marketingdatascience/d5f8e5e73163.

☺ 均值廻歸 (regression toward the mean) 現象: 當一個特性的極端傾向發生時，會
有返回這項特性的平均值 (regression toward mediocrity)。

☺ 例子: 身高較高的父母，其子女的平均身高，要低於他們父母的平均身高，不會
長得更高；相對的，身高比較矮的父母，其子女的平均身高，要高於他們父母的

平均身高，不會變得更矮。

Basic Concepts

1. A regression model is:

(a) A tendency of the response variable Y to vary with the predictor
variable X in a systematic fashion.

(b) A scattering of points around the curve of statistical relationship.

2. Assumptions for a regression model:

(a) There is a probability distribution (機率分佈) of Y for each level of X.
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(b) The means of these probability distributions vary in some systematic
fashion with X . ( E(Y |X) )

3. Example: Performance evaluation (Figure 1.2)

(a) The year-end evaluation Y is treated in a regression model as a random variable .
For each level of midyear performance evaluation X , there is postulated
a probability distribution of Y .

(b) Figure 1.4: shows probability distributions of Y for midyear evaluation levels
at X = 50, X = 70 and X = 90. Note that the means of the probability
distributions have a systematic relation to the level of X.

(c) This systematic relationship is called the regression function of Y on X .
The graph of the regression function is called the regression curve .

(d) The regression curve, which describes the relation between the means of the
probability distributions of Y and the level of X , is the counterpart

to the general tendency of Y to vary with X systematically in a statistical re-
lation.

Construction of Regression Models

1. Selection of Predictor Variables:

(a) Choosing a limited number of explanatory or predictor variables
that is ”good” in some sense for the purposes of the analysis.
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(b) Other considerations: the importance of the variable; the degree to which
observations on the variable can be obtained more accurately, or quickly, or economically
than on competing variables; and the degree to which the variable can be

controlled .

2. Functional Form of Regression Relation:

(a) The functional form of the regression relation is not known in advance
and must be decided upon empirically once the data have been collected.

(b) The linear or quadratic regression functions are often used as satis-
factory 昀椀rst approximations to regression functions of unknown nature.

3. Scope of Model:

(a) In formulating a regression model, we usually need to restrict the coverage
of the model to some interval or region of values of the predictor variable(s).

(b) Example: a company studying the e昀昀ect of price on sales volume investigated
six price levels, ranging from $4.95 to $6.95. Here, the scope of the model is
limited to price levels ranging from near $5 to near $7. The shape of the
regression function substantially outside this range would be in serious doubt
because the investigation provided no evidence as to the nature of the statistical
relation below $4.95 or above $6.95.

Uses of Regression Analysis

1. Regression analysis serves three major purposes: (1) description , (2) control ,
and (3) prediction .

2. The several purposes of regression analysis frequently overlap in practice.

Regression and Causality (因果關係)

1. The existence of a statistical relation between the response variable Y and the
explanatory or predictor variable X does not imply in any way that Y depends

causally on X.
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2. No matter how strong is the statistical relation between X and Y , no cause-and-e昀昀ect
pattern is necessarily implied by the regression model.

3. Example: data on size of vocabulary (X) and writing speed (Y ) for a sample of
young children aged 5-10 will show a positive regression relation. This relation does
not imply, however, that an increase in vocabulary causes a faster writing speed.
Here, other explanatory variables, such as age of the child and amount of education,
a昀昀ect both the vocabulary (X) and the writing speed (Y ). Older children have a
larger vocabulary and a faster writing speed.

4. Regression analysis by itself provides no information about causal patterns
and must be supplemented by additional analyses to obtain insights about
causal relations.

Use of Computers

1. Regression analysis often entails lengthy and tedious calculations, computers are
usually utilized to perform the necessary calculations.

2. Almost every statistics package for computers contains a regression component:
BMDP, MINITAB, SAS , SPSS , SYSTAT, JMP, S-Plus, MATLAB, and

R .

1.3 Simple Linear Regression Model with Distribu-
tion of Error Terms Unspeci昀椀ed

Formal Statement of Model

1. A simple linear regression model:

Yi = β0 + β1Xi + ϵi, i = 1, · · · , n (1.1)

where:

(a) Yi: the value of the response variable in the ith trial .

(b) β0 and β1: parameters to be estimated.
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(c) Xi: the value of the predictor variable in the ith trial

(d) ϵi: a random error term with mean E(ϵi) = 0 and variance σ2(ϵi) = σ2 .

(e) ϵi and ϵj are uncorrelated so that their covariance is zero (i.e., σ(ϵi, ϵj) = 0

for all i, j; i ̸= j) i = 1, · · · , n.

2. Regression model (1.1) is said to be

(a) simple: there is only one predictor variable

(b) linear in the parameters : no parameter appears as an exponent or is
multiplied or divided by another parameter

(c) linear in the predictor variable: because this variable appears only in the
昀椀rst power.

3. A model that is linear in the parameters and in the predictor variabie is also called
昀椀rst-order model.

Important Features of Model

1. The response Yi in the ith trial is the sum of two components: (1) the constant term
β0 + β1Xi and (2) the random term ϵi . Hence, Yi is a random variable .

2. Since E(ϵi) = 0, it follows that:

E(Yi) = E(β0 + β1Xi + ϵi) = β0 + β1Xi + E(ϵi) = β0 + β1Xi .

Thus, the response Yi, when the level of X in the ith trial is Xi, comes from a
probability distribution whose mean is:

E(Yi) = β0 + β1Xi .

The regression function for model (1.1) is:

E(Y ) = β0 + β1X

since the regression function relates the means of the probability distributions of Y
for given X to the level of X.
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3. The response Yi in the ith trial exceeds or falls short of the value of the re-
gression function ( E(Yi) ) by the error term amount ϵi .

4. The error terms ϵi are assumed to have constant variance σ2 ‧It therefore follows
that the responses Yi have the same constant variance:

σ2(Yi) = σ2

Thus, regression model (1.1) assumes that the probability distributions of Y have
the same variance σ2 , regardless of the level of the predictor variable X.

5. Since the error terms ϵi and ϵj are assumed to be uncorrelated, so are the responses
Yi and Yj ‧

6. Summary: regression model Yi = β0 + β1Xi + ϵi implies that the responses
Yi come from probability distributions whose means are E(Yi) = β0 + β1Xi

and whose variances are σ2 , the same for all levels of X. Further, any two
responses Yi and Yj are uncorrelated .

7. Example: Electrical distributor (Figure 1.6)
A consultant for an electrical distributor is studying the relationship between the
number of bids ( X ) requested by construction contractors (承包商) for basic
lighting equipment during a week and the number of hours ( Y ) required to
prepare the bids.

(a) Suppose that regression model (1.1) is:

Yi = 9.5 + 2.1Xi + ϵi

(b) The regression function is:

E(Y ) = 9.5 + 2.1X.

(c) Suppose that in the ith week, Xi = 45 bids are prepared and the actual number
of hours required is Yi = 108. We have

E(Yi) = 9.5 + 2.1(45) = 104 and ϵi = Yi − E(Yi) = 108− 104 = 4

(d) The error term ϵi is simply the deviation of Yi from its mean value E(Yi).
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Meaning of Regression Parameters

1. The parameters β0 and β1, in regression model (1.1) are called regression coefficients .

(a) The parameter β0 is the Y intercept of the regression line. β1, is the
slope of the regression line.

(b) β1 indicates the change in the mean of the probability distribution of Y
per unit increase in X.

(c) When the scope of the model includes X = 0 , β0 gives the mean of the
probability distribution of Y at X = 0. When the scope of the model does
not cover X = 0, β0 does not have any particular meaning as a separate
term in the regression model.

2. Example: Electrical distributor (Figure 1.7)

(a) The regression function: E(Y ) = 9.5+2.1X. The slope β1 = 2.1 indicates that
the preparation of one additional bid in a week leads to an increase
in the mean of the probability distribution of Y of 2.1 hours.

(b) The intercept β0 = 9.5 indicates the value of the regression function at X = 0 .
Since the linear regression model was formulated to apply to weeks where the
number of bids prepared ranges from 20 to 80 , β0 = 9.5 does not have
any intrinsic meaning of its own here.
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Alternative Versions of Regression Model

1. Let X0 be a constant identically equal to 1 . Then, we can write (1.1) as
follows:

Yi = β0X0 + β1Xi + ϵi where X0 ≡ 1

This version of the model associates an X variable with each regression coefficient.

2. An alternative modi昀椀cation is to use for the predictor variable the deviation Xi − X̄

rather than Xi:

Yi = β0 + β1(Xi − X̄) + β1X̄ + ϵi

= (β0 + β1X̄) + β1(Xi − X̄) + ϵi

= β∗

0 + β1(Xi − X̄) + ϵi ,

where
β∗

0 = β0 + β1X̄
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1.4 Data for Regression Analysis∗

1.5 Overview of Steps in Regression Analysis∗

1.6 Estimation of Regression Function

Method of Least Squares

1. For the observations (Xi, Yi) for each case, the method of least squares con-
siders the sum of the n squared deviation of Yi from its expected value E(Yi):

Q =
n

∑

i=1

(Yi − (β0 + β1Xi))
2 (1.8)

2. According to the method of least squares, the estimators of β0 and β1 are those val-
ues b0 and b1 respectively, that minimize the criterion Q for the given sample
observations (X1, Y1), (X2, Y2), · · · , (Xn, Yn).

3. Example: (Figure 1.9)

(a) Figure 1.9a: Y = 9.0 + 0 ·X. This regression line is not a good 昀椀t. The sum
of the squared deviations for the three cases is:

Q = (5− 9.0)2 + (12− 9.0)2 + (10− 9.0)2 = 26.0
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(b) Figure 1.9b: Y = 2.81 + 0.177X (the least squares regression line). The
criterion Q is much reduced:

Q = (5− 6.35)2 + (12− 12.55)2 + (10− 8.12)2 = 5.7

Thus, a better 昀椀t of the regression line to the data corresponds to a smaller
sum Q.

4. Least Squares Estimators:

(a) For given sample observations (Xi, Yi), the quantity Q in (1.8) is a function
of β0 and β1. The values of β0 and β1, that minimize Q can tie derived by
di昀昀erentiating (1.8) with respect to β0 and β1:

∂Q

∂β0

= −2
∑

(Yi − β0 − β1Xi)

∂Q

∂β1

= −2
∑

Xi(Yi − β0 − β1Xi)

(b) Set these partial derivatives equal to zero, using b0 and b1 (or β̂0 and β̂1 )
to denote the particular values of β0 and β1, that minimize Q:

−2
∑

(Yi − b0 − b1Xi) = 0 ⇒ ∑

Yi − nb0 − b1
∑

Xi = 0

−2
∑

Xi(Yi − b0 − b1Xi) = 0 ⇒ ∑

XiYi − b0
∑

Xi − b1
∑

X2
i = 0 .

(c) Normal equations:
∑

Yi = nb0 + b1
∑

Xi

∑

XiYi = b0
∑

Xi + b1
∑

X2
i

,

b0 and b1 are called point estimators of β0 and β1, respectively.

NOTE:
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(d) The normal equations can be solved simultaneously for b0 and b1:

b0 =
1

n

(

∑

Yi − b1
∑

Xi

)

= Ȳ − b1X̄

b1 =

∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2

where X̄ and Ȳ are the means of the Xi and the Yi observations, respectively.

5. Properties of Least Squares Estimators:

(a) Gauss-Markov theorem: Under the conditions of regression model (1.1),
the least squares estimators b0 and b1 in (1.10) are unbiased and have

minimum variance among all unbiased linear estimators.

E(b0) = β0 and E(b1) = β1 ,

so that neither estimator tends to overestimate or underestimate systemati-
cally.

(b) The theorem states that the estimators b0 and bl are more precise (i.e.,
their sampling distributions are less variable ) than any other estimators
belonging to the class of unbiased estimators that are linear functions of the
observations Y1, · · · , Yn.

(c) The estimators b0 and b1 are such linear functions of the Yi.

b1 =

∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2

This expression is equal to:

b1 =

∑

(X1 − X̄)Yi
∑

(Xi − X̄)2
=

∑

kiYi

where:
ki =

Xi − X̄
∑

(Xi − X̄)2

Since the ki are known constants (because the Xi are known constants), b1 is
a linear combination of the Yi and hence is a linear estimator.

(d) In the same fashion, it can be shown that b0 is a linear estimator.
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6. Example: The Toluca Company Manufactures Refrigeration Equipment
In the past, one of the replacement parts has been produced periodically in lots
of varying sizes. When a cost improvement program was undertaken, company
officials wished to determine the optimum lot size (Xi) for producing this part. The
production of this part involves setting up the production process and machining
and assembly operations. One key input for the model to ascertain the optimum
lot size was the relationship between lot size and labor hours required to produce
the lot. To determine this relationship, data on lot size and work hours (Yi) for 25
recent production runs were utilized. The production conditions were stable during
the six-month period in which the 25 runs were made and were expected to continue
to be the same during the next three years, the planning period for which the cost
improvement program was being conducted.

(a) (Table 1.1) All lot sizes are multiples of 10, a result of company policy to fa-
cilitate the administration of the parts production.

(b) (Figure 1.10a) shows a SYSTAT scatter plot of the data. The scatter plot
indicates that the relationship between lot size and work hours is
reasonably linear . We also see that no observations on work hours are

unusually small or large , with reference to the relationship between lot
size and work hours.
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(c) Calculate the least squares estimates:

b1 =

∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2
=

70690

19800
= 3.5702

b0 = Ȳ − b1X̄ = 312.28− 3.5702(70.0) = 62.37

(d) We estimate that the mean number of work hours increases by 3.57 hours
for each additional unit produced in the lot. This estimate applies to the range
of lot sizes (from about 20 to about 120 ) in the data from which
the estimates were derived.

☺ R code example:
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> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
> attach(iris)
> plot(Petal.Width, Petal.Length, main = "iris data", asp = 1)
> iris.lm <- lm(Petal.Length ~ Petal.Width)
> summary(iris.lm)

Call:
lm(formula = Petal.Length ~ Petal.Width)

Residuals:
Min 1Q Median 3Q Max

-1.33542 -0.30347 -0.02955 0.25776 1.39453

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.08356 0.07297 14.85 <2e-16 ***
Petal.Width 2.22994 0.05140 43.39 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4782 on 148 degrees of freedom
Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16

> abline(iris.lm, col = "blue")

(111-2) Regression Analysis (I) January 24, 2023



Chapter 1: Linear Regression with One Predictor Variable Page 19/29

Point Estimation of Mean Response

1. Estimated Regression Function

(a) Given sample estimators b0 and b1 of the parameters in the regression function:

E(Y ) = β0 + β1X

we estimate the regression function as follows:

Ŷ = b0 + b1X

where Ŷ (read Y hat ) is the value of the estimated regression function
at the level X of the predictor variable.

(b) We call a value of the response variable a response and E(Y ) the mean response .

(c) The mean response stands for the mean of the probability distribution of Y
corresponding to the level X of the predictor variable.

(d) Ŷ then is a point estimator of the mean response when the level of the predictor
variable is X.

(e) An extension of the Gauss-Markov theorem: Ŷ is an unbiased estimator of
E(Y ), with minimum variance in the class of unbiased linear estimators.

(f) For the cases in the study, we will call Ŷi:

Ŷi = b0 + b1Xi , i = 1, . . . , n

the 昀椀tted value for the ith case. Thus, the 昀椀tted value Ŷi is to be viewed
in distinction to the observed value Yi .

2. Example: The Toluca Company Example

(a) (Figure 1.10b) The estimated regression function:

Ŷ = 62.37 + 3.5702X

It appears to be a good description of the statistical relationship between
lot size and work hours.
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(b) Suppose that we estimate the mean number of work hours (mean response)
required when the lot size is X = 65 units:

Ŷ = 62.37 + 3.5702(65) = 294.4 hours

(c) Interpretation: if many lots of 65 units are produced under the conditions of
the 25 runs on which the estimated regression function is based, the mean
labor time for these lots is about 294 hours.

(d)
�� ��NOTE Of course, the labor time for anyone lot of size 65 is likely to fall above
or below the mean response because of inherent variability in the production
system, as represented by the error term in the model.

(e) (Table 1.2) The 昀椀tted value for the 昀椀rst case X1 = 80 is:

Ŷ1 = 62.37 + 3.5702(80) = 347.98 hours

☺ R code example:
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> predict(iris.lm, list(Petal.Width = c(0.2, 0.4)))
1 2

1.529546 1.975534
> data.frame(iris.lm$fitted.values, iris.lm$residuals)

iris.lm.fitted.values iris.lm.residuals
1 1.529546 -0.129546132
2 1.529546 -0.129546132
3 1.529546 -0.229546132
...
8 1.529546 -0.029546132
9 1.529546 -0.129546132
10 1.306552 0.193447918
...

3. Alternative Model

(a) When the alternative regression model (1.6) is to be utilized:

Yi = β∗

0 + β1(Xi − X̄) + ϵi ,

the least squares estimator b1 of β1 remains the same as before.

(b) The least squares estimator of β∗

0 = β0 + β1X̄ becomes

b∗0 = b0 + b1X̄ = (Ȳ − b1X̄) + b1X̄ = Ȳ

Hence, the estimated regression function for alternative model (1.6) is:

Ŷ = Ȳ + b1(X − X̄)

4. In the Toluca Company example, Ȳ = 312.28 and X̄ = 70.0. Hence, the estimated
regression function in alternative form is:

Ŷ = 312.28 + 3.5702(X − 70.0)

For the 昀椀rst lot in our example, X1 = 80; hence, we estimate the mean response to
be:

Ŷ1 = 312.28 + 3.5702(80− 70.0) = 347.98

which, of course, is identical to our earlier result.
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Residuals (殘差)

1. The ith residual is the di昀昀erence between the observed value Yi and the cor-
responding 昀椀tted value Ŷi . This residual is denoted by ei :

ei = Yi − Ŷi

2. For regression model (1.1), the residual ei becomes:

ei = Yi − (b0 + b1Xi) = Yi − b0 − b1Xi

3. (Figure 1.12) The magnitude of a residual is represented by the vertical deviation
of the Yi observation from the corresponding point on the estimated regression func-
tion (i.e., from the corresponding 昀椀tted value Ŷi).�� ��NOTE We need to distinguish between the model error term value ϵi = Yi − E(Yi)

and the residual ei = Yi − Ŷi . The former involves the vertical deviation of Yi

from the unknown true regression line and hence is unknown . On the other
hand, the residual is the vertical deviation of Yi from the 昀椀tted value Ŷi on the
estimated regression line, and it is known .

4. Residuals are highly useful for studying whether a given regression model is appropriate
for the data at hand.

Properties of Fitted Regression Line

1. The sum of the residuals is zero:
n

∑

i=1

ei = 0
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∑

ei =
∑

(Yi − b0 − b1Xi) =
∑

Yi − nb0 − b1
∑

Xi�� ��NOTE Rounding errors may, of course, be present in any particular case, resulting in a
sum of the residuals that does not equal zero exactly.

2. The sum of the squared residuals, ∑

e2i , is a minimum. This was the re-
quirement to be satis昀椀ed in deriving the least squares estimators of the regression
parameters.

3. The sum of the observed values Yi equals the sum of the 昀椀tted values Ŷi:
n

∑

i=1

Yi =
n

∑

i=1

Ŷi

NOTE:

4. The sum of the weighted residuals is zero when the residual in the ith trial is
weighted by the level of the predictor variable in the ith trial:

n
∑

i=1

Xiei = 0

NOTE:

5. The sum of the weighted residuals is zero when the residual in the ith trial is
weighted by the 昀椀tted value of the response variable for the ith trial:

n
∑

i=1

Ŷiei = 0

NOTE:
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6. The regression line always goes through the point (X̄, Ȳ ) .

Ŷ = Ȳ + b1(X − X̄) = Ȳ + b1(X̄ − X̄) = Ȳ

NOTE:

1.7 Estimation of Error Terms Variance σ2

Point Estimator of σ2

1. The variance σ2 of the error terms ϵi in regression model (1.1) needs to be
estimated to obtain an indication of the variability of the probability distribu-
tions of Y . A variety of inferences (推論) concerning the regression function
and the prediction of Y require an estimate of σ2‧

2. Single Population: The estimator of the variance σ2 is the sample variance s2:

s2 =

∑n

i=1(Yi − Ȳ )2

n− 1

which is an unbiased estimator of the variance σ2 of an in昀椀nite population.
The sample variance is often called a mean square , because a sum of squares
has been divided by the appropriate number of degrees of freedom .

3. Regression Model

(a) We need to calculate a sum of squared deviations , but must recognize
that the Yi now come from di昀昀erent probability distributions with di昀昀erent
means that depend upon the level Xi. The deviations are the residuals :

Yi − Ŷi = ei

and the appropriate sum of squares, denoted by SSE , is:

SSE =
n

∑

i=1

(Yi − Ŷi)
2 =

n
∑

i=1

e2i

where SSE stands for error sum of squares or residual sum of squares .
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(b) The sum of squares SSE has n− 2 degrees of freedom associated with
it. Two degrees of freedom are lost because both β0 and β1 had to
be estimated in obtaining the estimated means Ŷi. Hence, the appropriate

mean square , denoted by MSE or s2, is:

s2 = MSE =
SSE

n− 2
=

∑

(Yi − Ŷi)
2

n− 2
=

∑

e2i
n− 2

where MSE stands for error mean square or residual mean square .

(c) It can be shown that MSE is an unbiased estimator of σ2 for regression
model (1.1): E(MSE) = σ2 .

4. Example: The Toluca Company Example

(a) (Table 1.2) we obtain: SSE = 54, 825 and

s2 = MSE =
54, 825

23
= 2, 384

A point estimate of σ, the standard deviation of the probability distribution
of Y for any X, is s =

√
2, 384 = 48.8 hours.

(b) Consider again the case where the lot size is X = 65 units. We found earlier
that the mean of the probability distribution of Y for this lot size is estimated
to be 294.4 hours. Now, we have the additional information that the standard
deviation of this distribution is estimated to be 48.8 hours.
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1.8 Normal Error Regression Model

Model

1. To set up interval estimates and make tests , however, we need to make
an assumption about the form of the distribution of the error terms ϵi: they are

normally distributed .

2. The normal error regression model:

Yi = β0 + β1Xi + ϵi , i = 1, · · · , n, (1.24)

(a) Yi: the observed response in the ith trial.

(b) Xi: known constant, the level of the predictor variable in the ith trial.

(c) β0 and β1: parameters to be estimated.

(d) ϵi: independent normally distributed, with mean 0 and variance σ2 ( N(0, σ2) ).

3. (Figure 1.6) Regression model (1.24) implies that the Yi are independent nor-
mal random variables, with mean E(Yi) = β0 + β1Xi and variance σ2 ‧

4. The normality assumption for the error terms is justi昀椀able in many situations
because

(a) the error terms frequently represent the e昀昀ects of factors omitted from
the model that a昀昀ect the response to some extent and that vary at random
without reference to the variable X.
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(b) the estimation and testing procedures are based on the t distribution and
are usually only sensitive to large departures from normality . Thus, un-
less the departures from normality are serious , particularly with respect
to skewness , the actual con昀椀dence coefficients and risks of errors will be
close to the levels for exact normality .

Estimation of Parameters by Method of Maximum likelihood

1. Single Population∗

2. Regression Model

(a) For the normal error regression model (1.24), each Yi observation is normally
distributed with mean β0 + β1Xi and standard deviation σ .

(b) The density of an observation Yi for the normal error regression model (1.24)
is:

fi =
1√
2πσ

exp
[

−1

2

(

Yi − β0 − β1Xi

σ

)2
]

(c) The likelihood function (可能性函數) for n observations Y1, Y2, · · · , Yn is
the product of the individual densities. Since the variance σ2 of the error terms
is usually unknown, the likelihood function is a function of three parameters,

β0, β1 and σ2 .

L(β0, β1, σ
2) =

n
∏

i=1

1

(2πσ2)1/2
exp

[

− 1

2σ2
(Yi − β0 − β1Xi)

2

]

=
1

(2πσ2)n/2
exp

[

− 1

2σ2

n
∑

i=1

(Yi − β0 − β1Xi)
2

]

(d) The values of β0, β1, and σ2 that maximize this likelihood function are the
maximum likelihood estimators (MLE) (最大概估計量) and are denoted

by β̂0, β̂1, and σ̂2 , respectively.

(e) We 昀椀nd the values of β0, β1 and σ2 that maximize the logarithm of likelihood
function logL:

logL = −n

2
log 2π − n

2
logσ2 − 1

2σ2

∑

(Yi − β0 − β1Xi)
2 .
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(f) Partial di昀昀erentiation of the logarithm of the likelihood function:

∂(logL)
∂β0

=
1

σ2

∑

(Yi − β0 − β1Xi) = 0

∂(logL)
∂β1

=
1

σ2

∑

Xi(Yi − β0 − β1Xi) = 0

∂(logL)
∂σ2

= − n

2σ2
+

1

2σ4

∑

(Yi − β0 − β1Xi)
2 = 0

(g) Set these partial derivatives equal to zero, replacing, β0 , β1 and σ2 by the
estimators β̂0 , β̂1 and σ̂2:

∑

(Yi − β̂0 − β̂1Xi) = 0

∑

Xi(Yi − β̂0 − β̂1Xi) = 0

∑

(Yi − β̂0 − β̂1Xi)
2

n
= σ̂2

(h) The MLE of β0 and β1 are the same estimators as those provided by the
method of least squares :

β̂0 = Ȳ − β̂1X̄ = b0

β̂1 =

∑

(Xi − X̄)(Yi − Ȳ )
∑

(Xi − X̄)2
= b1

σ̂2 =

∑

(Yi − Ŷi)
2

n

(i) The maximum likelihood estimator σ̂2 is biased, and ordinarily the unbiased
estimator MSE =

∑
(Yi−Ŷi)

2

n−2
is used.�� ��NOTE The unbiased estimator MSE or s2 di昀昀ers but slightly from the maximum

likelihood estimator σ̂2, especially if n is not small:

s2 = MSE =
n

n− 2
σ̂2 .
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3. Properties:
Since the maximum likelihood estimators β̂0 and β̂1, are the same as the least squares
estimators b0 and b1 they have the properties of all least squares estimators:

(a) They are unbiased .

(b) They have minimum variance among all unbiased linear estimators.

(c) In addition, the maximum likelihood estimators β̂0 and β̂1, for the normal
error regression model have other desirable properties: consistent (A.
52), sufficient (A.53) and the minimum variance unbiased estima-
tors (linear or otherwise).

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p72)

Assume the normal error regression model:

Yi = β0 + β1Xi + ϵi.

Find the estimation of parameters using method of maximum likelihood.

sol:

� TA Class'

&

$

%

• Problems: 1.6, 1.7, 1.18, 1.20, 1.24

• Exercises: 1.32, 1.33, 1.35, 1.36, 1.41

• Projects: 1.43
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計算頁

“少花點時間去取悅別人，多花些時間來經營自己。”
“Spend a little more time trying to make something of yourself and a little less time trying
to impress people.”

— 早餐俱樂部 (Breakfast Club, 1985)
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Kutner’s Applied Linear Statistical Models (5/E)

Chapter 2: Inferences in Regression and Correlation Analysis

Thursday 09:10-12:00, 商館 260205
Han-Ming Wu

Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

Overview
1. Take up inferences ( interval estimation and tests ) concerning the regression

parameters β0 and β1.

2. Discuss interval estimation of the mean E(Y ) of the probability distribution of Y ,
for given X, prediction intervals for a new observation Y , con昀椀dence bands for the
regression line, the analysis of variance approach to regression analysis, the general
linear test approach, and descriptive measures of association.

3. Assume that the normal error regression model (1.24) is applicable:

Yi = β0 + β1Xi + ϵi ,

where β0 and β1, are parameters, Xi are known constants, ϵi are independent
N(0, σ2) .

2.1 Inferences Concerning β1

1. Testing whether or not β1 = 0 is that, when β1 = 0, there is no linear association
between Y and X.

E(Y ) = β0 + 0 ·X = β0
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2. For normal error regression model (2.1), the condition β1 = 0 follows that the
probability distributions of Y are identical . There is no relation of any type
between Y and X.

Sampling Distribution of β̂1

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

For normal error regression model (2.1), show that b1, the point estimator of β1, is
a linear combination of the observation Yi. That is

b1 =
∑

kiYi, where ki =
Xi − X̄

∑

(Xi − X̄)2
.

sol:

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

For normal error regression model (2.1), if b1 is expressed as b1 =
∑

kiYi, show that
∑

ki = 0,
∑

kiXi = 1, and
∑

k2
i =

1
∑

(Xi − X̄)2
.

sol:
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p41)

For normal error regression model (2.1), show that the sampling distribution of b1,
the point estimator of β1, is normal, with mean and variance:

E(b1) = β1, and σ2(b1) =
σ2

∑

(Xi − X̄)2
=

∑

k2
i σ

2.

sol:

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p43)

Show that b1 has minimum variance among all unbiased linear estimator of the form:

β̂1 =
∑

ciYi,

where the ci are arbitrary constants.

sol:
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Sampling Distribution of (b1 − β1)/s(b1)

1. Since b1 is normally distributed, we know that the standardized statistic (b1 − β1)/σ(b1)

is a standard normal variable.

2. We need to estimate σ(b1) by s(b1) , and hence are interested in the distribution
of the statistic (b1 − β1)/s(b1).

3. When a statistic is standardized but the denominator is an estimated standard devi-
ation rather than the true standard deviation, it is called a studentized statistic .

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p44)

Show the studentized statistic b1 − β1

s(b1)
is distributed as t(n−2) for regression model

(2.1).

sol:
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Con昀椀dence Interval for β1

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p45)

Find the (1− α)% con昀椀dence interval for β1.

sol:

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p45)

(Toluca Company Example) Management wishes an estimate of β1, with 95 percent
con昀椀dence coefficient.

sol:

Obtain

s2(b1) =
MSE

∑

(Xi − X̄)2
=

2, 384

19, 800
= 0.12040, s(b1) = 0.3470.

For a 95 percent con昀椀dence coefficient, we 昀椀nd t(0.975;23) = 2.069. The 95
percent con昀椀dence interval:

3.5702− 2.069(0.3470) ≤ β1 ≤ 3.5702 + 2.069(0.3470)

⇒ 2.85 ≤ β1 ≤ 4.29

Thus, with con昀椀dence coefficient .95, we estimate that the mean number of
work hours increases by somewhere between 2.85 and 4.29 hours for each ad-
ditional unit in the lot.
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Tests Concerning β1

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p47)

Two-Sided Test A cost analyst in the Toluca Company is interested in testing,
using regression model (2.1), whether or not there is a linear association between
work hours and lot size, i.e., whether or not, β1 = 0. Please conduct the Two-Sided
Test for this problem and control the risk of a Type I error at α = 0.05.

sol:
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p47)

One-Sided Test Suppose the analyst in the Toluca Company had wished to test
whether or not , β1, is positive, controlling the level of signi昀椀cance at α = 0.05.
Please conduct the One-Sided Test for this problem.

sol:

Comments:

1. The P-value is sometimes called the observed level of signi昀椀cance .

2. Many scienti昀椀c publications commonly report the P-value together with the value
of the test statistic. In this way, one can conduct a test at any desired level of
signi昀椀cance a by comparing the P-value with the speci昀椀ed level α.

3. Users of statistical calculators and computer packages need to be careful to ascertain
whether one-sided or two-sided P-values are reported.

4. It is desired to test whether or not β1 equals some speci昀椀ed nonzero value β10 .
The alternatives are:

H0 : β1 = β10 versus Ha : β1 ̸= β10

and the appropriate test statistic is:

t∗ =
b1 − β10

s(b1)
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2.2 Inferences Concerning β0

1. The point estimator b0: b0 = Ȳ − b1X̄ .

2. The sampling distribution of b0 is normal, with mean and variance:

E(b0) = β0 , σ2(b0) = σ2

[

1

n
+

X̄2

∑

(Xi − X̄)2

]

3. An estimator of σ2(b0) is obtained by replacing σ2 by its point estimator MSE :

s2(b0) = MSE

[

1

n
+

X̄2

∑

(Xi − X̄)2

]

4. The sampling distribution of (b0−β0)/s(b0) is t(n−2) for regression model (2.1)

5. The con昀椀dence intervals for β0 is β0 ± t(1−α/2;n−2)s(b0) .

2.3 Some Considerations on Making Inferences Con-
cerning β0 and β1

E昀昀ects of Departures from Normality

1. If the probability distributions of Y are not exactly normal but do not depart
seriously , the sampling distributions of b0 and b1 will be approximately normal ,

and the use of the t distribution will provide approximately the speci昀椀ed con昀椀dence
coefficient or level of signi昀椀cance.

2. Even if the distributions of Y are far from normal, the estimators b0 and b1 gener-
ally have the property of asymptotic normality - their distributions approach
normality under very general conditions as the sample size increases.

Interpretation of Con昀椀dence Coefficient and Risks of Errors

1. Since regression model (2.1) assumes that the Xi are known constants, the con昀椀-
dence coefficient and risks of errors are interpreted with respect to taking repeated samples
in which the X observations are kept at the same levels as in the observed sample.
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2. (Toluca Company Example) The meaning of a con昀椀dence interval (CI) for β1, with
con昀椀dence coefficient 0.95: if many independent samples are taken where the levels
of X (the lot sizes) are the same as in the data set and a 95 percent con昀椀dence inter-
val is constructed for each sample, 95 percent of the intervals will contain
the true value of β1.

Spacing of the X levels

1. For given n and σ2, the variances of b1 and b0 are a昀昀ected by the spacing of the X

levels in the observed data.

2. The greater is the spread in the X levels, the larger is the quantity ∑

(Xi − X̄)2

and the smaller is the variance of b1.

Power of Tests

(NOTE: The power of tests on β0 and β1, can be obtained from Appendix Table B.5.)

1. The general test concerning β1:

H0 : β1 = β10 versus Ha : β1 ̸= β10

2. Test statistic: t∗ =
b1 − β10

s(b1)
.

3. Decision rule for level of signi昀椀cance α:

If |t∗| ≤ t(1−α/2;n−2) , conclude H0.

If |t∗| > t(1−α/2;n−2), conclude Ha.

4. The power of this test is the probability that the decision rule will lead to conclusion
Ha when Ha in fact holds:

Power = P (|t∗| > t(1−α/2;n−2)| δ)

where δ is the noncentrality measure - i.e., a measure of how far the true value of
β1, is from β10:

δ =
|β1 − β10|
σ(b1)
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p51)

In Toluca Company example, conduct the test for:

H0 : β1 = β10 = 0, versus Ha : β1 ̸= β10 = 0.

Calculate the power of the test when β1 = 1.5.

sol:

2.4 Interval Estimation of E(Yh)

1. Let Xh denote the level of X for which we wish to estimate the mean response.

2. Xh may be a value which occurred in the sample, or it may be some other value of
the predictor variable within the scope of the model.

3. The mean response when X = Xh is denoted by E(Yh) . The point estimator
Yh of E(Yh) is Ŷh = b0 + b1Xh .

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p52)

For normal error regression model, show that the sampling distribution of Ŷh is
normal, with mean and variance:

E(Ŷh) = E(Yh) and σ2(Ŷh) = σ2

[

1

n
+

(Xh − X̄)2
∑

(Xi − X̄)2

]

.

sol:
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The variability of the sampling distribution of Ŷh is a昀昀ected by how far Xh is from X̄

through the term (Xh − X̄)2 .

Sampling Distribution of (Ŷh − E(Yh))/s(Ŷh)

1. Ŷh − E(Yh)

s(Ŷh)
is distributed as t(n−2) for regression model (2.1).

Con昀椀dence Interval for E(Yh)

1. A (1− α)% con昀椀dence interval for E(Yh) is

Ŷh ± t(1−α/2;n−2)s(Ŷh) , s(Ŷh) = MSE

[

1

n
+

(Xh − X̄)2
∑

(Xi − X̄)2

]

.

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p54)

In the Toluca Company example, 昀椀nd a 90% CI for E(Yh) when the lot size is
Xh = 65 units.

sol:
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2.5 Prediction of New Observation
The new observation on Y to be predicted is viewed as the result of a new trial, indepen-
dent of the trials on which the regression analysis is based. We denote the level of X for
the new trial as Xh and the new observation on Y as Yh(new) .

Prediction Interval for Yh(new) when Parameters Known

In general, when the regression parameters of normal error regression model (2.1) are
known, the (1− α)% prediction limits for Yh(new) are:

E(Yh)± z(1−α/2)σ

Prediction Interval for Yh(new) when Parameters Unknown

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p58)

As we know,
Yh(new) − Ŷh

s(pred) is distributed as t(n−2) for a normal error regression model.
Find the prediction limits for a new observation Yh(new) at a given level Xh.

sol:
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p59)

The Toluca Company studied the relationship between lot size and work hours pri-
marily to obtain information on the mean work hours required for di昀昀erent lot sizes
for use in determining the optimum lot size. The company was also interested, how-
ever, to see whether the regression relationship is useful for predicting the required
work hours for individual lots. Find a 90 percent prediction interval for the number
of work hours for the next production runs of Xh = 100 units.

sol:
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Prediction of Mean of m New Observations for Given Xh

1. Denote the mean of m new Y observations to be predicted as Ȳh(new) . The 1−α

prediction limits are, assuming that the new m Y observations are independent:

Ŷh ± t(1−α/2;n−2)s(predmean)

where
s2(predmean) = MSE

m
+ s2(Ŷh)

or equivalently:

s2(predmean) = MSE

[

1

m
+

1

n
+

(Xh − X̄)2
∑

(Xi − X̄)2

]

.

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p61)

In the Toluca Company example, 昀椀nd the 90 percent prediction interval for the mean
number of work hours Ȳh(new) in three new production runs, each for Xh = 100 units.

sol:

2.6 Con昀椀dence-Band for Regression Line
1. A con昀椀dence band for the entire regression line E(Y ) = β0 + β1X enables us to see

the region in which the entire regression line lies. It is particularly useful for
determining the appropriateness of a 昀椀tted regression function.
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2. The Working-Hotelling (1−α)% con昀椀dence band for the regression line for regression
model (2.1) has the following two boundary values at any level Xh:

Ŷh ±Ws(Ŷh) , where W 2 = 2F(1−α;2,n−2) .

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p62)

Find the 90 percent con昀椀dence band for the regression line to determine how pre-
cisely we have been able to estimate the regression function for the Toluca Company
example.

sol:

2.7 Analysis of Variance Approach to Regression Anal-
ysis

Partitioning of Total Sum of Squares

1. The variation is measured in terms of the deviations of the Yi around their mean
Ȳ : Yi − Ȳ .

2. SSTO (total sum of squares): the measure of total variation is the sum of the
squared deviations: SSTO =

∑

(Yi − Ȳ )2 .

3. SSE (error sum of squares): the measure of variation in Yi that is present when the
predictor variable X is taken into account: SSE =

∑

(Yi − Ŷi)
2 .

4. SSR (regression sum of squares): SSR =
∑

(Ŷi − Ȳ )2 .
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p65)

Show that SSTO = SSR + SSE. That is
∑

(Yi − Ȳ )2 =
∑

(Ŷi − Ȳ )2 +
∑

(Yi − Ŷi)
2

sol:
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Breakdown of Degrees of Freedom

1. Corresponding to the partitioning of the total sum of squares SSTO, there is a
partitioning of the associated degrees of freedom (df).

2. SSTO has n− 1 degrees of freedom associated with it. One degree of freedom
is lost because the deviations Yi − Ȳ are subject to one constraint: they must
sum to zero . Equivalently, one degree of freedom is lost because the sample
mean Ȳ is used to estimate the population mean.

3. SSE has n− 2 degrees of freedom associated with it. Two degrees of freedom
are lost because the two parameters β0 and β1 are estimated in obtaining the
昀椀tted values Ŷi ‧

4. SSR has one degree of freedom associated with it. Although there are n

deviations Ŷi − Ȳ , all 昀椀tted values Ŷi are calculated from the same estimated
regression line.

Mean Squares

1. A sum of squares divided by its associated degrees of freedom is called a mean square
(MS).

2. The regression mean square: MSR =
SSR

1
= SSR .

3. The error mean square: MSE =
SSE

n− 2
.

Analysis of Variance Table

1. Basic Table:

(a) The breakdowns of the total sum of squares and associated degrees of freedom
are displayed in the form of an analysis of variance table (ANOVA table)
in Table 2.2.

(b) The ANOVA table contains a column of expected mean squares that will
be utilized.
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2. Modi昀椀ed Table:

(a) The modi昀椀ed ANOVA table is based on the fact that the total sum of squares
can be decomposed into two parts:

SSTO =
∑

(Yi − Ȳ )2 =
∑

Y 2
i − nȲ 2

(b) In the modi昀椀ed ANOVA table, the total uncorrected sum of squares,
denoted by SSTOU, is de昀椀ned as:

SSTOU =
∑

Y 2
i

and the correction for the mean sum of squares, denoted by SS(correction for
mean), is de昀椀ned as:

SS(correction for mean) = nȲ 2

Expected Mean Squares

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p68)
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Show that

E(MSE) = σ2, and

E(MSR) = σ2 + β2
1

∑

(Xi − X̄)2.

sol:

F Test of β1 = 0 versus β1 ̸= 0

1. The analysis of variance provides us with a test for:

H0 : β1 = 0 versus Ha : β1 ̸= 0 .

2. Test Statistic: The test statistic for the analysis of variance approach is denoted
by F ∗:

F ∗ =
MSR

MSE

3. Large values of F ∗ support Ha and values of F ∗ near 1 support H0.
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p70)

Show that if H0 holds, F ∗ follows the F(1,n−2) distribution.

sol:

1. Construction of Decision Rule: Since the test is upper-tail and F ∗ is distributed
as F(1,n−2) when H0 holds, the decision rule is as follows when the risk of a Type I
error is to be controlled at α:

If F ∗ ≤ F(1−α;1,n−2) , conclude H0,

If F ∗ > F(1−α;1,n−2), conclude Ha
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p71)

For the Toluca Company example, conduct a F test for H0 : β1 = 0 versus Ha :

β1 ̸= 0.

sol:

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p71)

Show that for a given α level, the F test of β1 = 0 versus β1 ̸= 0 is equivalent
algebraically to the two-sided t test.

sol:
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2.8 General Linear Test Approach

Full Model

1. For the simple linear regression case, the full model or unrestricted model is the
normal error regression model:

Yi = β0 + β1Xi + ϵi .

2. The error sum of squares for the full model:

SSE(F ) =
∑

(Yi − (b0 + b1Xi))
2 =

∑

(Yi − Ŷ )2 = SSE .

3. SSE(F ) measures the variability of the Yi observations around the 昀椀tted regression
line.

Reduced Model

1. Consider H0 : β1 = 0 versus Ha : β1 ̸= 0, the model when H0 holds is called the
reduced or restricted model:

Yi = β0 + ϵi .

2. The error sum of squares for the reduced model:

SSE(R) =
∑

(Yi − b0)
2 =

∑

(Yi − Ȳ )2 = SSTO .

Test Statistic

1. It can be shown that SSE(F ) never is greater than SSE(R):

SSE(F ) ≤ SSE(R) .

2. The actual test statistic is a function of SSE(R)− SSE(F ),

F ∗ =

(

SSE(R)− SSE(F )

dfR − dfF

)

/

(

SSE(F )

dfF

)

,

which follows the F distribution when H0 holds.
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3. The decision rule therefore is:

If F ∗ ≤ F(1−α;dfR−dfF ,dfF ) , conclude H0

If F ∗ > F(1−α;dfR−dfF ,dfF ), conclude Ha

4. For testing whether or not β1 = 0, we therefore have:

SSE(R) = SSTO, SSE(F ) = SSE, dfR = n− 1, dfF = n− 2,

so that we obtain

F ∗ =

(

SSTO − SSE

(n− 1)− (n− 2)

)

/

(

SSE

n− 2

)

=
SSR

1
/
SSE

n− 2
=

MSR

MSE

which is identical to the analysis of variance test statistic.

2.9 Descriptive Measures of Linear Association be-
tween X and Y

Coefficient of Determination

1. The coefficient of determination R2 is de昀椀ned to measure the e昀昀ect of X in reducing
the variation in Y . It is expressed as the reduction in variation (SSTO − SSE = SSR)

as a proportion of the total variation:

R2 =
SSR

SSTO
= 1− SSE

SSTO
.

2. We may interpret R2 ( 0 ≤ R2 ≤ 1 ) as the proportionate reduction of total
variation associated with the use of the predictor variable X.

3. The larger R2 is, the more the total variation of Y is reduced by introducing
the predictor variable X.

4. The limiting values of R2 may occur:

(a) When all observations fall on the 昀椀tted regression line, then SSE = 0

and R2 = 1 . The predictor variable X accounts for all variation in
the observations Yi
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(b) When the 昀椀tted regression line is horizontal so that b1 = 0 and Ŷi = Ȳ ,
then SSE = SSTO and R2 = 0 . There is no linear association be-
tween X and Y in the sample data.

limitations of R2: three common misunderstandings

1. Misunderstanding 1: A high R2 indicates that useful predictions can be
made. (not necessarily correct)

(a) (Toluca Company Example) the coefficient of determination was high (R2 =

0.82). Yet the 90 percent prediction interval for the next lot, consisting of
100 units, was wide (332 to 507 hours) and not precise enough to permit
management to schedule workers e昀昀ectively.

(b) Misunderstanding 1 arises because R2 measures only a relative reduction
from SSTO and provides no information about absolute precision for estimat-
ing a mean response or predicting a new observation.

2. Misunderstanding 2: A high R2 indicates that the estimated regression line is a
good 昀椀t . (not necessarily correct)

(a) (Figure 2.9a) a scatter plot where R2 is high (R2 = 0.69). Yet a linear regres-
sion function would not be a good 昀椀t since the regression relation is curvilinear.

3. Misunderstanding 3: A R2 near zero indicates that X and Y are not related.
(not necessarily correct).
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(a) (Figure 2.9b) a scatter plot where R2 between X and Y is R2 = 0.02. Yet X

and Y are strongly related; however, the relationship between the two variables
is curvilinear.

(b) Misunderstandings 2 and 3 arise because R2 measures the degree of linear association
between X and Y , whereas the actual regression relation may be curvilinear.

Coefficient of Correlation

1. A measure of linear association between Y and X when both Y and X are random
is the coefficient of correlation. This measure is the signed square root of R2:

r = ±
√
R2

2. A plus or minus sign is attached to this measure according to whether the slope of
the 昀椀tted regression line is positive or negative . Thus, the range of r is:

−1 ≤ r ≤ 1 .
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2.10 Considerations in Applying Regression Analy-
sis∗

2.11 Normal Correlation Models∗
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• Problems: 2.5, 2.8, 2.10, 2.14, 2.17, 2.24, 2.30, 2.31, 2.32

• Exercises: 2.50, 2.55

• Projects: 2.62
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Regression Analysis (I)
Kutner’s Applied Linear Statistical Models (5/E)

Chapter 3: Diagnostics and Remedial Measures

Thursday 09:10-12:00, 商館 260205
Han-Ming Wu

Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

Overview
1. The features of the model, such as linearity of the regression function or

normality of the error terms, may not be appropriate for the particular data.

2. It is important to examine the aptness of the model for the data before inferences
based on that model are undertaken.

3. Use some simple graphic methods to study the appropriateness of a model, as
well as some formal statistical tests .

4. Consider some remedial techniques that can be helpful when the data are not
in accordance with the conditions of regression model (2.1).

3.1 Diagnostics for Predictor Variable
1. Diagnostic for the predictor variable to see if there are any outlying X values

that could in昀氀uence the appropriateness of the 昀椀tted regression function.

2. Example: Toluca Company Example

(a) (Figure 3.1a) The dot plot : the minimum and maximum lot sizes are
20 and 120, respectively, that the lot size levels are spread throughout this
interval, and that there are no lot sizes that are far outlying .
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(b) (Figure 3.1b) The sequence plot : lot size is plotted against production
run (i.e., against time sequence). The plot had shown that smaller lot sizes
had been utilized early on and larger lot sizes later on.

(c) (Figure 3.1c) The stem-and-leaf plot : provides information similar to a
frequency histogram . The letter M denotes the median, and the letter
H denotes the 昀椀rst and third quartiles.

(d) (Figure 3.1d) The box plot : the middle half of the lot sizes range from
50 to 90, and that they are fairly symmetrically distributed because the
median is located in the middle of the central box.
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3.2 Residuals
1. Diagnostics for the response variable are usually carried out indirectly through an

examination of the residuals .

2. The residual ei is the di昀昀erence between the observed value Yi and the 昀椀tted value
Ŷi: ei = Yi − Ŷi .

3. The residual may be regarded as the observed error , in distinction to the
unknown true error ϵi in the regression model: ϵi = Yi − E(Yi) .

4. For regression model (2.1), the error terms ϵi are assumed to be independent
normal random variables, with mean 0 and constant variance σ2 ‧If

the model is appropriate for the data at hand, the observed residuals ei should then
re昀氀ect the properties assumed for the ϵi.

Properties of Residuals

1. Mean

(a) The mean of the n residuals ei for the simple linear regression model (2.1) is
always 0: ē =

∑

ei/n = 0 .

(b) It provides no information as to whether the true errors ϵi have expected
value E(ϵi) = 0 .

2. Variance

(a) The variance of the n residuals ei for regression model is

s2 =

∑

(ei − ē)2

n− 2
=

∑

e2i
n− 2

=
SSE

n− 2
= MSE .

(b) If the model is appropriate, MSE is an unbiased estimator of the variance
of the error terms σ2.

3. Nonindependence

(a) The residuals ei are not independent random variables because they in-
volve the 昀椀tted values Ŷi which are based on the same 昀椀tted regression
function.
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(b) The residuals for regression model (2.1) are subject to two constraints. These
are constraint (1.17) - ∑

ei = 0 - and constraint (1.l9) - ∑

Xiei = 0 .

(c) When the sample size is large in comparison to the number of parameters
in the regression model, the dependency e昀昀ect among the residuals ei is rela-
tively unimportant and can be ignored for most purposes.

Semistudentized Residuals

1. Since the standard deviation of the error terms ϵi is σ, which is estimated by
√
MSE , it is natural to consider the semistudentized residuals:

e∗i =
ei − ē√
MSE

=
ei√
MSE

2. Both semistudentized residuals and studentized residuals can be very helpful in
identifying outlying observations. (details in Chapter 10)

Departures from Model to Be Studied by Residuals

1. We shall consider the use of residuals for examining six important types of depar-
tures from the simple linear regression model (2.1) with normal errors:

(a) The regression function is not linear .

(b) The error terms do not have constant variance .

(c) The error terms are not independent .

(d) The model 昀椀ts all but one or a few outlier observations.

(e) The error terms are not normally distributed.

(f) One or several important predictor variables have been omitted from the
model.
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3.3 Diagnostics for Residuals
1. Some informal diagnostic plots of residuals to provide information on whether any

of the six types of departures from the simple linear regression model (2.1)

(a) Plot of residuals against predictor variable.

(b) Plot of absolute or squared residuals against predictor variable.

(c) Plot of residuals against 昀椀tted values . (the most important)

(d) Plot of residuals against time or other sequence.

(e) Plots of residuals against omitted predictor variables.

(f) Box plot of residuals.

(g) Normal probability plot of residuals.

2. (Figure 3.2) Toluca Company example: plots of the residuals against the predictor
variable and against time, a box plot, and a normal probability plot.
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Nonlinearity of Regression Function

1. Residual plot: whether a linear regression function is appropriate for the data be-
ing analyzed can be studied from a residual plot against the 昀椀tted values .

2. Nonlinearity of the regression function can also be studied from a scatter plot of X and Y ,
but this plot is not always as e昀昀ective as a residual plot.

3.
�

�

�

�
Example Ridership - Transit Example (Figure 3.3)(TABLE 3.1)

(a) One would like to study the relation between maps distributed and bus rider-
ship in eight test cities. Let X be the number of bus transit maps distributed
free to residents of the city at the beginning of the test period and Y be the
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increase during the test period in average daily bus ridership during nonpeak
hours.

(b) (Figures 3.3) the lack of linearity of the regression function.

(c) In general, the residual plot is to be preferred. It can clearly show any
systematic pattern in the deviations around the 昀椀tted regression line.

4. (Figure 3.4a) the residual plot against X when a linear regression model is appropriate .
The residuals then fall within a horizontal band centered around 0, displaying no
systematic tendencies to be positive and negative.

5. (Figure 3.4b) a departure from the linear regression model that indicates the need
for a curvilinear regression function. Here the residuals tend to vary in a
systematic fashion between being positive and negative .
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Nonconstancy of Error Variance

1. The residuals plot is also helpful to examine whether the variance of the error terms
is constant .

2. Plots of the absolute values of the residuals or of the squared residu-
als against the predictor variable X or against the 昀椀tted values Ŷ are also useful
for diagnosing nonconstancy of the error variance since the signs of the
residuals are not meaningful for examining the constancy of the error variance.

3.
�

�

�

�
Example Blood Pressure - Age Example

(a) A study of the relation between diastolic blood pressure of healthy, adult
women (Y ) and their age (X).

(b) (Figure 3.5) The residual plot suggests that the older the woman is, the more
spread out the residuals are.

(c) Since the relation between blood pressure and age is positive, this suggests
that the error variance is larger for older women than for younger ones.

(d) (Figure 3.5b) a plot of the absolute residuals against age for the blood pressure
shows more clearly that the residuals tend to be larger in absolute magnitude
for older-aged women.

4. (Figure 3.4c) a residual plots when the error variance increases with X. One can
also encounter error variances decreasing with increasing levels of the predictor
variable and occasionally varying in some more complex fashion.
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Presence of Outliers

1. Residual outliers (extreme observations) can be identi昀椀ed from residual plots
against X or Y , as well as from box plots, stem-and-leaf plots, and dot plots of the
residuals.

2. A rough rule of thumb when the number of cases is large is to consider semistudentized residuals
with absolute value of four or more to be outliers. (details in Chapter 10).

3. (Figure 3.6) The residual plot in presents semistudentized residuals and contains
one outlier, which is circled.

4. How to deal with outliers:

(a) A safe rule frequently suggested is to discard an outlier only if there is
direct evidence that it represents an error in recording, a miscalculation, a
malfunctioning of equipment, or a similar type of circumstance.
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(b) Under the least squares method, a 昀椀tted line may be pulled disproportionately
toward an outlying observation because the sum of the squared deviations

is minimized.

(c) This could cause a misleading 昀椀t if indeed the outlying observation resulted
from a mistake or other extraneous cause.

5. (Figure 3.7) The 昀椀tted regression is distorted by the outlier that the residual
plot suggest a lack of 昀椀t of the linear regression model.

Nonindependence of Error Terms

1. A sequence plot of the residuals: the purpose of plotting the residuals against
time or in some other type of sequence is to see if there is any correlation
between error terms that are near each other in the sequence.

2.
�

�

�

�
Example Linear Time-related Trend E昀昀ect

(a) (Figure 3.8a) contains a time sequence plot of the residuals in an experiment to
study the relation between the diameter of a weld (X) and the shear strength
of the weld (Y ).

(b) An evident correlation between the error terms stands out. Negative
residuals are associated mainly with the early trials, and positive residuals
with the later trials.
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(c) It is sometimes useful to view the problem of nonindependence of the error
terms as one in which an important variable (in this case, time ) has been
omitted from the model.

3.
�

�

�

�
Example Cyclical Nonindependent

(a) (Figure 3.8b) the adjacent error terms are also related, but the resulting pattern
is a cyclical one with no trend e昀昀ect present.

(b) When the error terms are independent , we expect the residuals in a se-
quence plot to 昀氀uctuate in a more or less random pattern around the
base line 0.

Nonnormality of Error Terms

1. Small departures from normality do not create any serious problems.

2. The normality of the error terms can be studied informally by examining the resid-
uals in a variety of graphic ways.

3. Distribution Plots A box plot, histogram, dot plot, or stem-and-leaf plot of the
residuals can be helpful for detecting gross departures from normality. Note that
the number of cases in the regression study must be reasonably large for any of
these plots to convey reliable information about the shape of the distribution
of the error terms.

4. Comparison of Frequencies Another possibility when the number of cases is
reasonably large is to compare actual frequencies of the residuals against
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expected frequencies under normality . For example, one can determine
whether, say, about 68 percent of the residuals ei fall between ±

√
MSE or

about 90 percent fall between ±1.645
√
MSE .

5. Normal Probability Plot of the residuals Each residual is plotted against its
expected value under normality. A plot that is nearly linear suggests agree-

ment with normality, whereas a plot that departs substantially from linearity sug-
gests that the error distribution is not normal.

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p111)

In Toluca Company example, 昀椀nd the expected values of the ordered residuals under
normality.

sol:
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5. Three normal probability plots when the distribution of the error terms departs
substantially from normality.

(a) (Figure 3.9a) shows a normal probability plot when the error term distribution
is highly skewed to the right . Note the concave-upward shape of the
plot.

(b) (Figure 3.9b) shows a normal probability plot when the error term distribution
is highly skewed to the left . Here, the pattern is concave downward .

(c) (Figure 3.9c) shows a normal probability plot when the distribution of the
error tenus is symmetrical but has heavy tails ; in other words, the
distribution has higher probabilities in the tails than a normal distribution.

https://www.ucd.ie/ecomodel/Resources/QQplots_WebVersion.html

6. Difficulties in Assessing Normality

(a) The analysis for model departures with respect to normality is, in many re-
spects, more difficult than that for other types of departures.

(b) It is usually a good strategy to investigate these other types of departures 昀椀rst,
before concerning oneself with the normality of the error terms.

(111-2) Regression Analysis (I) January 24, 2023
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Omission of Important Predictor Variables

1. Residuals should also be plotted against variables omitted from the model that
might have important e昀昀ects on the response.

2.
�

�

�

�
Example One would like to study the relation between output (Y ) and age (X)

of worker in an assembling operation for a sample of employees. In this study,
the machines produced by two companies (A and B) are used in the assembling
operation.

(a) (Figure 3.10a) no ground for suspecting the appropriateness of the linearity of
the regression function or the constancy of the error variance.

(b) (Figure 3.10b, 3.l0c) The residuals for Company A machines tend to be posi-
tive: while those for Company B machines tend to be negative.
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(c) Type of machine appears to have a de昀椀nite e昀昀ect on productivity, and output
predictions may turn out to be far superior when this variable is added to the
model.
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Some Final Comments1

1. Several types of departures may occur together .

2. Although graphic analysis of residuals is only an informal method of analysis, in
many cases it suffices for examining the aptness of a model.

3. The basic approach to residual analysis explained here applies not only to sim-
ple linear regression but also to more complex regression and other types of

statistical models .

4. Model misspeci昀椀cation due to either nonlinearity or the omission of im-
portant predictor variables tends to be serious, leading to biased estimates of
the regression parameters and error variance.

5. Nonconstancy of error variance tends to be less serious, leading to less efficient
estimates and invalid error variance estimates.

6. The presence of outliers can be serious for smaller data sets when their in昀氀u-
ence is large.

7. The nonindependence of error terms results in estimators that are unbiased
but whose variances are seriously biased .

3.4 Overview of Tests Involving Residuals
1. Graphic analysis of residuals is inherently subjective .

2. Most statistical tests require independent observations. The residuals are dependent .
The dependencies become quite small for large samples , so that one can usu-
ally then ignore them.

Tests for Randomness

1. A runs test is frequently used to test for lack of randomness in the residuals
arranged in time order.

1Some will be discussed in other Chapters.
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2. Durbin-Watson test : designed for lack of randomness in least squares residuals.
(Chapter 12).

Tests for Constancy of Variance

1. When a residual plot gives the impression that the variance may be increasing or
decreasing in a systematic manner related to X or E(Y ), a simple test is based
on the rank correlation between the absolute values of the residuals and the
corresponding values of the predictor variable.

2. Tests for constancy of the error variance: the Brown-Forsythe test and the
Breusch-Pagan test (Section 3.6.)

Tests for Outliers

1. A simple test for identifying an outlier observation: detail in (Chapter 10).

2. Many other tests to aid in evaluating outliers have been developed (Reference 3.1.)

Tests for Normality

1. Goodness of 昀椀t tests (the chi-square test, the Kolmogorov-Smirnov test and
its modi昀椀cation, the Lilliefors test) can be employed for testing the normality of the
error terms by analyzing the residuals.

2. A simple test based on the normal probability plot of the residuals (Section
3.5.)

3.5 Correlation Test for Normality
1. A formal test for normality of the error terms can be conducted by calculating the co-

efficient of correlation between the residuals ei and their expected values
under normality.

2. A high value of the correlation coefficient is indicative of normality.
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3. (Table B.6) (Looney and Gulledge) (Ref. 3.2) contains critical values (per-
centiles) for various sample sizes for the distribution of the coefficient of correlation
between the ordered residuals and their expected values under normality when the
error terms are normally distributed.

4. If the observed coefficient of correlation is at least as large as the tabled value,
for a given a level, one can conclude that the error terms are reasonably normally
distributed.

5.
�

�

�

�
Example Toluca Company Example: the coefficient of correlation between the or-

dered residuals and their expected values under normality is 0.991 . Controlling
the a risk at 0.05 , we 昀椀nd from Table B.6 that the critical value for n = 25

is 0.959 . Since the observed coefficient exceeds this level, we have support
for our earlier conclusion that the distribution of the error terms does not depart
substantially from a normal distribution.

☺ Normality test: https://en.wikipedia.org/wiki/Normality_test.

3.6 Tests for Constancy of Error Variance

Brown-Forsythe Test

1. Assumption: the sample size needs to be large enough so that the dependencies
among the residuals can be ignored.

2. The Brown-Forsythe test is based on the variability of the residuals. The
larger the error variance, the larger the variability of the residuals will tend to be.

3. The Brown-Forsythe test then consists simply of the two-sample t test based
on test statistic (A.67)

t∗ =
Ȳ − Z̄

s(Ȳ − Z̄)
to determine whether the mean of the absolute deviations for one group di昀昀ers
signi昀椀cantly from the mean absolute deviation for the second group. Steps:

(a) Divide the data set into two groups, according to the level of X , so that
one group consists of cases where the X level is comparatively low and
the other group consists of cases where the X level is comparatively high .
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(b) If the error variance is either increasing or decreasing with X, the residuals in
one group will tend to be more variable than those in the other group.

(c) Equivalently, the absolute deviations of the residuals around their group
mean will tend to be larger for one group than for the other group.

(d) In order to make the test more robust , we utilize the absolute deviations
of the residuals around the median for the group (Ref. 3.5).

4. Although the distribution of the absolute deviations of the residuals is usually
not normal , it has been shown that the t∗ test statistic still follows approxi-

mately the t distribution when the variance of the error terms is constant
and the sample sizes of the two groups are not extremely small.

5. Notations: the ith residual for group 1 (2) by ei1 (ei2), the sample sizes of the two
groups by n1 and n2, the medians of the residuals in the two groups by ẽ1 and ẽ2.

6. The Brown-Forsythe test uses the absolute deviations of the residuals around their
group median , to be denoted by di1 and di2:

di1 = |ei1 − ẽ1| and di2 = |ei2 − ẽ2|

7. The two-samplet test statistic (called the Brown-Forsythe test statistics t∗BF ) be-
comes:

t∗BF =
d̄1 − d̄2

s
√

1
n1

+ 1
n2

where d̄1 and d̄2 are the sample means of the di1 and di2 respectively, and the pooled
variance s2 becomes:

s2 =

∑

(di1 − d̄1)
2 +

∑

(di2 − d̄2)
2

n− 2

8. If the error terms have constant variance and n1 and n2 are not extremely small, t∗BF

follows approximately the t distribution with n− 2 degrees of freedom.

9. Large absolute values of t∗BF indicate that the error terms do not have constant
variance.
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p117)

Use the Brown-Forsythe test for the Toluca Company example to determine whether
or not the error term variance varies with the level of X. (Note that since the X

levels are spread fairly uniformly, you can divide the 25 cases into two groups with
approximately equal X ranges. The 昀椀rst group consists of the 13 runs with lot sizes
from 20 to 70. The second group consists of the 12 runs with lot sizes from 80 to
120. (α = 0.05, t0.975,23 = 2.069)

sol:
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Breusch-Pagan Test∗

3.7 F Test for Lack of Fit

Assumptions

1. F test for lack of 昀椀t is a formal test for determining whether a speci昀椀c type of
regression function adequately 昀椀ts the data.

2. The lack of 昀椀t test assumes that the observations Y for given X are (1) independent
and (2) normally distributed, and that (3) the distributions of Y have the

same variance σ2 ‧

3. Replications, Replicates: the lack of 昀椀t test requires repeat observations
at one or more X levels. Repeat trials for the same level of the predictor variable,
of the type described, are called replications . The resulting observations are
called replicates .

4.
�

�

�

�
Example Bank Example

(a) In an experiment involving 12 similar but scattered suburban branch offices
of a commercial bank, holders of checking accounts at the offices were o昀昀ered
gifts for setting up money market accounts. Minimum initial deposits in the
new money market account were speci昀椀ed to qualify for the gift. The value of
the gift was directly proportional to the speci昀椀ed minimum deposit. Various
levels of minimum deposit and related gift values were used in the experiment
in order to ascertain the relation between the speci昀椀ed minimum deposit and
gift value, on the one hand, and number of accounts opened at the office, on
the other. Altogether, six levels of minimum deposit and proportional gift
value were used, with two of the branch offices assigned at random to each
level. One branch office had a 昀椀re during the period and was dropped from
the study. Table 3.4a contains the results, where X is the amount of minimum
deposit and Y is the number of new money market accounts that were opened
and quali昀椀ed for the gift during the test period.
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(b) A linear regression function was 昀椀tted:

Ŷ = 50.72251 + 0.48670X

(Table 3.4b): The analysis of variance table.

(c) (Figure 3.11) A scatter plot, together with the 昀椀tted regression line, indicates
that a linear regression function is inappropriate . We use the general
linear test approach to do a formal test.
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Notation

1. (Table 3.5) presents the same data but in an arrangement that recognizes the repli-
cates. We shall denote the di昀昀erent X levels in the study, whether or not replicated
observations are present, as X1, · · · , Xc.

2. There are six minimum deposit size levels in the study (c = 6), for 昀椀ve of which
there are two observations and for one there is a single observation. We shall let
X1 = 75 (the smallest minimum deposit level), X2 = 100, · · ·, X6 = 200.

3. Denote the number of replicates for the jth level of X as nj; for our example,
n1 = n2 = n3 = n5 = n6 = 2 and n4 = 1. Thus, the total number of observations n

is given by: n =
∑c

j=1 nj.

4. Denote the observed value of the response variable for the ith replicate for the jth
level of X by Yij, where i = 1, · · · , nj, j = 1, · · · , c.

5. (Table 3.5), Y11 = 28, Y21 = 42, Y12 = 112, and so on. Denote the mean of the
Y observations at the level X = Xj by Ȳj. Thus, Ȳ1 = (28 + 42)/2 = 35 and
Ȳ4 = 152/1 = 152.

Full model

1. The full model used for the lack of 昀椀t test makes the same assumptions as the
simple linear regression model (2.1) except for assuming a linear regression relation,
the subject of the test.

Yij = µj + ϵij ,

where µj are parameters j = 1, · · · , c, ϵij are independent N(0, σ2) .

2. Since the error terms have expectation zero, it follows that:

E(Yij) = µj .

Thus, the parameter µj (j = 1, · · · , c) is the mean response when X = Xj.

3. The full model states that each response Y is made up of two components: the
mean response when X = Xj and a random error term.
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4. The di昀昀erence between the two models is that in the full model (3.13) there are no
restrictions on the means µj , whereas in the regression model (2.1) the mean
responses are linearly related to X (i.e., E(Y ) = β0 + β1X ).

5. The least squares or maximum likelihood estimators for the parameters µj: µ̂j = Ȳj .

6. The estimated expected value for observation Yij is Ȳj , and the error sum of
squares (also called the pure error sum of squares, SSPE) for the full model:

SSE(F ) =
∑

j

∑

i(Yij − Ȳj)
2 = SSPE

7. Note that SSPE is made up of the sums of squared deviations at each X level .
At level X = Xj, this sum of squared deviations is:

∑

i

(Yij − Ȳj)
2

These sums of squares are then added over all of the X levels (j = 1, · · · , c).

8.
�

�

�

�
Example For the bank example, we have:

SSPE = (28− 35)2 + (42− 35)2 + (112− 124)2 + · · ·+ (104− 114)2 = 1, 148

Note that any X level with no replications makes no contribution to SSPE

because Ȳj = Y1j for j = 4.

9. The degrees of freedom associated with SSPE can be obtained by recognizing that
the sum of squared deviations (3.17) at a given level of X is like an ordinary total
sum of squares based on n observations, which has n− 1 degrees of freedom
associated with it. Here, there are nj observations when X = Xj; hence the degrees
of freedom are nj − 1 .

10. Just as SSPE is the sum of the sums of squares (3.17), so the number of degrees
of freedom associated with SSPE is the sum of the component degrees of freedom:

dfF =
∑

j(nj − 1) =
∑

j nj − c = n− c
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Reduced Model

1. For testing the appropriateness of a linear regression relation, the alternatives are:

H0 : E(Y ) = β0 + β1X

Ha : E(Y ) ̸= β0 + β1X

Thus, H0 postulates that µj in the full model (3.13) is linearly related to Xj

µj = β0 + β1Xj

The reduced model under H0 therefore is:

Yij = β0 + β1Xj + ϵij

2. Note that the reduced model is the ordinary simple linear regression model (2.1),
with the subscripts modi昀椀ed to recognize the existence of replications .

3. We know that the estimated expected value for observation Yij with regression
model (2.1) is the 昀椀tted value Ŷij

Ŷij = b0 + b1Xj

Hence, the error sum of squares for the reduced model is the usual error sum of
squares SSE:

SSE(R) =
∑∑

(Yij − (b0 + b1Xj))
2 =

∑∑

(Yij − Ŷij)
2 = SSE

We also know that the degrees of freedom associated with SSE(R) are: dfR = n− 2 .

4.
�

�

�

�
Example For the bank example, we have from Table 3.4b: SSE(R) = SSE =

14741.6, dfR = 9

Test Statistic

1. The general linear test statistic (2.70):

F ∗ =
SSE(R)− SSE(F )

dfr − dfF
÷ SSE(F )

dfF

here becomes:
F ∗ =

SSE − SSPE

(n− 2)− (n− c)
÷ SSPE

n− c
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2. The di昀昀erence between the two error sums of squares is called the lack of 昀椀t sum of
squares (SSLF ):

SSLF = SSE − SSPE

3. We can then express the test statistic as follows:

F ∗ =
SSLF

c− 2
÷ SSPE

n− c
=

MSLF

MSPE

where MSLF denotes the lack of 昀椀t mean square and MSPE denotes the pure
error mean square.

4. We know that large values of F ∗ lead to conclusion Ha in the general linear test.
Decision rule (2.71) here becomes:

If F ∗ ≤ F(1−α;c−2,n−c), conclude H0

If F ∗ > F(1−α;c−2,n−c), conclude Ha

5.
�

�

�

�
Example For the bank example, the test statistic:

SSPE = 1148.0, n− c = 11− 6 = 5

SSE = 14741.6,

SSLF = 14741.6− 1, 148.0 = 13, 593.6, c− 2 = 6− 2 = 4

F ∗ =
13, 593.6

4
÷ 1148.0

5
=

3, 398.4

229.6
= 14.80

If the level of signi昀椀cance is to be α = 0.01, we require F(0.99;4,5) = 11.4. Since
F ∗ = 14.80 > 11.4, we conclude Ha, that the regression function is not linear. The
P -value for the test is 0.006.

ANOVA Table

1. The error deviations in SSE are made up of a pure error component and a lack of
昀椀t component: SSE = SSPE + SSLF .

Yij − Ŷij = (Yij − Ȳj) + (Ȳj − Ŷij)

Error deviation = Pure error deviation + Lack of 昀椀t deviation
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2.
�

�

�

�
Example (Figure 3.12) illustrates this partitioning for the case Y13 = 160, X3 = 125

in the bank example.

3. When (3.28) is squared and summed over all observations, we obtain (3.27) since
the cross-product sum equals zero:

∑∑

(Yij − Ŷij)
2 =

∑∑

(Yij − Ȳj)
2 +

∑∑

(Ȳj − Ŷij)
2

SSE = SSPE + SSLF

4. Why SSLF measures lack of 昀椀t? If the linear regression function is appropriate,
then the means Ȳj will be near the 昀椀tted values Ŷj calculated from the
estimated linear regression function and SSLF will be small .

5. On the other hand, if the linear regression function is not appropriate, the means
Ȳj will not be near the 昀椀tted values calculated from the estimated linear regression
function and SSLF will be large.

6. SSLF has c−2 degrees of freedom: there are c means Ȳj in the sum of squares,
and two degrees of freedom are lost in estimating the parameters β0 and β1,
of the linear regression function to obtain the 昀椀tted values Ŷj ‧

7. (Table 3.6) contains the ANOVA decomposition for the bank example.
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Comments

1. Not all levels of X need have repeat observations for the F test for lack of 昀椀t to be
applicable. Repeat observations at only one or some levels of X are sufficient .

2. Suppose that prior to any analysis of the appropriateness of the model, we had
昀椀tted a linear regression model and wished to test whether or not β1 = 0. For the
bank example (Table 3Ab), test statistic (2.60) would be:

F ∗ =
MSR

MSE
=

5141.3

1638.0
= 3.14

For α = .10, F(0.90;1,9) = 3.36, and we would conclude H0 , that β1 = 0 or that
there is no linear association between minimum deposit size (and value of gift)
and number of new accounts. A conclusion that there is no relation between these
variables would be improper, however. Such an inference requires that regression
model (2.1) be appropriate . Here, there is a de昀椀nite relationship, but the
regression function is not linear. This illustrates the importance of always examining
the appropriateness of a model before any inferences are drawn.
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3. The alternative Ha in (3.19) includes all regression functions other than a linear
one. For instance, it includes a quadratic regression function or a logarithmic one.
If Ha is concluded, a study of residuals can be helpful in identifying an appro-
priate function.

4. When no replications are present in a data set, an approximate test for lack of 昀椀t
can be conducted if there are some cases at adjacent X levels for which the mean
responses are quite close to each other. Such adjacent cases are grouped together
and treated as pseudo replicates , and the test for lack of 昀椀t is then carried out
using these groupings of adjacent cases. (Reference 3.8.)

3.8 Overview of Remedial Measures
1. If the simple linear regression model (2.1) is not appropriate for a data set, there

are two basic choices:

(a) Abandon regression model (2.1) and develop and use a more appropriate model .

(b) Employ some transformation on the data so that regression model (2.1)
is appropriate for the transformed data.

Nonlinearity of Regression Function

Section 3.9, Section 3.10. Chapter 7.

Nonconstancy of Error Variance

Section 3.9, Chapter 11.

Nonindependence of Error Terms

Chapter 12.

Nonnormality of Error Terms

Section 3.9.
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Omission of Important Predictor Variables

Chapter 6.

Outlying Observations

Chapter 11.

3.9 Transformations
Simple transformations of either the response variable Y or the predictor variable

X , or of both , are often sufficient to make the simple linear regression model
appropriate for the transformed data.

Transformations for Nonlinear Relation Only

1. We 昀椀rst consider transformations for linearizing a nonlinear regression relation when
the distribution of the error terms is reasonably close to a normal distri-
bution and the error terms have approximately constant variance .

2. In this situation, transformations on X should be attempted. Transformation
on Y may materially change the shape of the distribution of the - error terms
from the normal distribution and may also lead to substantially di昀昀ering error term
variances.
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3. (Figure 3.13) some prototype nonlinear regression relations with constant error vari-
ance and also presents some simple transformations on X that may be helpful to

linearize the regression relationship without a昀昀ecting the distributions of Y .

4.
�

�

�

�
Example A battery of simulated sales

(a) Data from an experiment on the e昀昀ect of number of days of training received
(X) on performance (Y ) in a battery of simulated sales situations are presented
in Table 3.7, columns 1 and 2, for the 10 participants in the study.

(b) (Figure 3.14a) Clearly the regression relation appears to be curvilinear, so the
simple linear regression model (2.1) does not seem to be appropriate. Since the

variability at the di昀昀erent X levels appears to be fairly constant , we
shall consider a transformation on X. Based on Figure 3.13a, consider initially
the square root transformation X ′ =

√
X .
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(c) (Figure 3.14b), the same data are plotted with the predictor variable trans-
formed to X ′ =

√
X. Note that the scatter plot now shows a reasonably

linear relation. The variability of the scatter at the di昀昀erent X levels is
the same as before, since we did not make a transformation on Y .

(d) To examine further whether the simple linear regression model (2.1) is appro-
priate now, we 昀椀t it to the transformed X data:

Ŷ = −10.33 + 83.45X ′ .

(e) (Figure 3.14c) the plot of residuals against X ′ shows no evidence of lack
of 昀椀t or of strongly unequal error variances.
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(f) (Figure 3.14d) a normal probability plot of the residuals. No strong indications
of substantial departures from normality . This conclusion is supported
by the high correlation coefficient between the ordered residuals and their
expected values under normality, 0.979.

(g) For α = 0.01, Table B.6 shows that the critical value is 0.879, so the observed
coefficient is substantially larger and supports the reasonableness of normal
error terms. Thus, the simple linear regression model (2.1) appears to be
appropriate here for the transformed data.

(h) The 昀椀tted regression function in the original units of X can easily be
obtained, if desired:

Ŷ = −10.33 + 83.45
√
X

Transformations for Nonnormality and Unequal Error Variances

1. Unequal error variances and nonnormality of the error terms frequently appear
together. To remedy these departures from the simple linear regression model (2.1),
we need a transformation on Y , since the shapes and spreads of the
distributions of Y need to be changed.

2. A simultaneous transformation on X may be needed to obtain or maintain a
linear regression relation.

3. (Figure 3.15) Frequently, the nonnormality and unequal variances departures from
regression model (2.1) take the form of increasing skewness and increasing variability
of the distributions of the error terms as the mean response E(Y ) increases.
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4. Scatter plots and residual plots should be prepared to determine the
most e昀昀ective transformations.

5.
�

�

�

�
Example Plasma Level Example

(a) (Table 3.8) Data on age (X) and plasma (血漿) level of a polyamine (多元胺)
(Y ) for a portion of the 25 healthy children in a study.

(b) (Figure 3.16a) a scatter plot shows the distinct curvilinear regression
relationship, as well as the greater variability for younger children than for
older ones.

(c) (Figure 3.16b) the scatter plot of the logarithmic transformation Y ′ = log10 Y .
The transformation not only has led to a reasonably linear regression relation,
but the variability at the di昀昀erent levels of X also has become reasonably

constant .
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(d) To further examine the reasonableness of the transformation Y ′ = log10 Y , we
昀椀tted the simple linear regression model (2.1) to the transformed Y data and
obtained:

Ŷ ′ = 1.135− 0.1023X

(e) (Figure 3.16c, d) the evidence supports the appropriateness of regression model
(2.1) for the transformed Y data: (i) A plot of the residuals against X, and
a normal probability plot of the residuals. (ii) The coefficient of correlation
between the ordered residuals and their expected values under normality is

0.981 . (iii) For α = 0.05, Table B.6 indicates that the critical value is
0.959 so that the observed coefficient supports the assumption of normal-

ity of the error terms.

(f) NOTE: When Y is negative, the logarithmic transformation to shift the origin
in Y and make all Y observations positive would be Y ′ = log10(Y + k) ,
where k is an appropriately chosen constant.
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(g) NOTE: When unequal error variances are present but the regression relation
is linear, a transformation on Y may not be sufficient while such a transfor-
mation may stabilize the error variance, it will also change the linear
relationship to a curvilinear one. A transformation on X may therefore
also be required.

Box-Cox Transformations

1. The Box-Cox procedure (Ref. 3.9) automatically identi昀椀es a transformation from
the family of power transformations on Y . The family of power transformations
is of the form:

Y ′ = Y λ

where λ is a parameter to be determined from the data.

2. Note that this family encompasses the following simple transformations:

λ = 2 Y ′ = Y 2

λ = 0.5 Y ′ =
√
Y

λ = 0 Y ′ = loge(Y ) (by de昀椀nition)

λ = −0.5 Y ′ =
1√
Y

λ = −1.0 Y =
1

Y

☺ Power transform (Box-Cox transformation) - Wikipedia:
https://en.wikipedia.org/wiki/Power_transform.

Y ′(λ) =

{

Y λ
−1
λ

λ ̸= 0

loge Y λ = 0

3. The normal error regression model with the response variable a member of the
family of power transformations becomes:

Y λ = β0 + β1Xi + ϵi

Note that above regression model includes an additional parameter, λ, which needs
to be estimated.
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4. The Box-Cox procedure uses the method of maximum likelihood to estimate
λ, as well as the other parameters β0, β1, and σ2.

5. A simple procedure for obtaining λ̂:

(a) search in a range of potential λ values; for example, λ = −2, λ = −1.75, · · · , λ =

1.75, λ = 2. For each λ value, the Y λ
i observations are 昀椀rst standardized

so that the magnitude of the error sum of squares does not depend on the value
of λ.

(b) Once the standardized observations have been obtained for a given λ value,
they are regressed on the predictor variable X - and the error sum of square SSE
is obtained.

(c) It can be shown that the maximum likelihood estimate λ̂ is that value of λ for
which SSE is a minimum.

6. After a transformation has been tentatively selected, residual plots and other anal-
yses described earlier need to be employed to ascertain that the simple linear re-
gression model (2.1) is appropriate for the transformed data.

3.10 Exploration of Shape of Regression Function∗

lowess Method∗

Use of Smoothed Curves to Con昀椀rm Fitted Regression Function∗

3.11 Case Example − Plutonium Measurement
1. Background Description: Some environmental cleanup work requires that nuclear

materials, such as plutonium 238 (鈽-238), be located and completely removed from
a restoration site. When plutonium has become mixed with other materials in very
small amounts, detecting its presence can be a difficult task. Even very small
amounts can be traced, however, because plutonium emits subatomic particles −
alpha particles − that can be detected. Devices that are used to detect plutonium
record the intensity of alpha particle strikes in counts per second (#/sec). The
regression relationship between alpha counts per second (the response variable) and
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plutonium activity (the explanatory variable) is then used to estimate the activity
of plutonium in the material under study.

2. Data Description: (Table 3.10) In a study to establish the regression relationship
for a particular measurement device, four plutonium standards were used. These
standards are aluminum/plutonium rods containing a 昀椀xed, known level of pluto-
nium activity. The levels of plutonium activity in the four standards were 0.0, 5.0,
10.0, and 20.0 picocuries (皮克居禮，衡量幅射的單位) per gram (pCi/g). Each
standard was exposed to the detection device from 4 to 10 times, and the rate of
alpha strikes, measured as counts per second, was observed for each replication.

3. Goal: The task here is to estimate the regression relationship between alpha counts
per second (Y ) and plutonium activity (X).

4. Assumption Before Doing Analysis: the level of alpha counts increases with pluto-
nium activity, but the exact nature of the relationship is generally unknown.

5. Exploratory Data Analysis, EDA:

(a) Scatter plot: (Figure 3.20a) The strike rate tends to increase with the activity
level of plutonium. Notice also that nonzero strike rates are recorded for the
standard containing no plutonium. This results from background radiation
and indicates that a regression model with an intercept term is required here.
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(b) Investigate Relationship: The regression relationship may be linear or slightly
curvilinear in the range of the plutonium activity levels included in the study.

(c) Outlier Detection: An examination of laboratory records revealed that the ex-
perimental conditions were not properly maintained for the last case, and it
was therefore decided that case 24 should be discarded . A linear regres-
sion function was 昀椀tted next, based on the remaining 23 cases.

6. Parameters Estimation and ANOVA: (Figure 3.21a) the slope of the regression line
is not zero (F ∗ = 228.9984, P -value= 0.0000) so that a regression relationship exists .
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7. Model Diagnostic:

(a) Residuals Plot: (Figure 3.21b) the 昀氀ared, megaphone shape of the residual
plot shows that the error variance appears to be increasing with the level of
plutonium activity.

(b) The Normal Probability plot: (Figure 3.21c) suggests non-normality (heavy tails) ,
but the nonlinearity of the plot is likely to be related (at least in part) to the
unequal error variances.

(c) Breusch-Pagan Test: the existence of nonconstant variance is con昀椀rmed by the
Breusch-Pagan Test statistic:

χ2
BP = 23.29 > χ2

(0.95;1) = 3.84

8. Re-analysis After Data Transformation on Y :

(a) Box-Cox transformation: using the standardized variable, the maximum like-
lihood estimate of λ to be λ̂ = 0.65. The Box-Cox procedure supports the use
of the square root transformation (i.e., use of λ = 0.5).

(b) Parameters Estimation and ANOVA: (Figure 3.22a) The results of 昀椀tting a
linear regression function when the response variable is Y ′ =

√
Y . The Lack

of Fit Test statistic is F ∗ = 10.1364 with P -value = 0.0010.
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(c) Diagnostic Plots: (Figure 3.22b, c) the residual plot shows that the error vari-
ance appears to be more stable , it also suggests the Y ′ is nonlinearly
related to X. The points in the normal probability plot fall roughly on a

straight line.

9. Re-analysis Again After Transformation on X

(a) Parameters Estimation and ANOVA: (Figure 3.23a) The Lack of Fit Test
(F ∗ = 1.2868 with P -value = 0.2992) supports the linearity of the regression
relating Y ′ =

√
Y to X ′ =

√
X .
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(b) Diagnostic Plots (Figure 3.23b, c) the residual plot shows that the square root
transformation of the predictor variable has eliminated the lack of 昀椀t. It also
suggests that some nonconstancy of the error variance may still remain; but if
so, it does not appear to be substantial . The normal probability plot of
the residuals in Figure 3.23c appears to be satisfactory.

(c) Diagnostic Tests: the Correlation Test (r = 0.986) supports the assump-
tion of normally distributed error terms (the interpolated critical value in Ta-
ble B.6 for α = 0.05 and n = 23 is 0.9555). The Breusch-Pagan Test
(X2

BP = 3.85 with a P -value = 0.05) supports the conclusion from the residual
plot that the nonconstancy of the error variance is not substantial.

(d) Additional Results: (Figure 3.23d) the scatter plot of X and Y with the con-
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昀椀dence band for the 昀椀tted regression line: Ŷ ′ = 0.0730 + 0.0573X ′ . The
regression line has been estimated fairly precisely. The lowess curve falls en-
tirely within the con昀椀dence band, supporting the reasonableness of a linear
regression relation between Y ′ and X ′.
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• Problems: 3.4, 3.9, 3.13, 3.15, 3.17

• Exercises: 3.20, 3.21
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Overview
1. The matrix approach is practically a necessity in multiple regression analysis,

since it permits extensive systems of equations and large arrays of data to be denoted
compactly and operated upon efficiently.

2. This chapter gives a brief introduction to matrix algebra .

3. Then we apply matrix methods to the simple linear regression model.

5.1 Matrices

De昀椀nition of Matrix

1. A matrix is a rectangular array of elements arranged in rows and columns.

2. A matrix with r rows and c columns will be represented either in full:

A =

























a11 a12 · · · a1j · · · a1c

a21 a22 · · · a2j · · · a2c
... ... ... ...
ai1 ai2 · · · aij · · · aic
... ... ... ...
ar1 ar2 · · · arj · · · arc
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or in abbreviated form:

A = [aij] , i = 1, · · · , r; j = 1, · · · , c

or simply by a boldface symbol, such as A.

Square Matrix

1. A matrix is said to be square if the number of rows equals the number of
columns.

Vector

1. A matrix containing only one column is called a column vector or simply a
vector.

C =



















c1

c2

c3

c4

c5



















the vector C is a 5× 1 matrix .

2. A matrix containing only one row is called a row vector : e.g., B′ = [15 25 50].
We use the prime symbol ( transpose ) for row vectors. Note that the row vector
B’ is a 1× 3 matrix.

Transpose

1. The transpose of a matrix A is another matrix, denoted by A’ , that is obtained
by interchanging corresponding columns and rows of the matrix A.

A =









2 5

7 10

3 4









then the transpose A’ is:

A′ =

[

2 7 3

5 10 4

]
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2. The transpose of a column vector is a row vector, and vice versa. This is the reason
why we used the symbol B’ earlier to identify a row vector, since it may be thought
of as the transpose of a column vector B. In general, we have:

A = [aij], A′ = [aji]

Equality of Matrices

1. Two matrices A and B are said to be equal if they have the same dimension and if
all corresponding elements are equal .

Regression Examples

1. In regression analysis, one basic matrix is the vector Y, consisting of the n obser-
vations on response variable

Y =















Y1

Y2

...
Yn















2. Another basic matrix in regression analysis is the X matrix, which is de昀椀ned as
follows for simple linear regression analysis:

X =















1 X1

1 X2

... ...
1 Xn















The matrix X consists of a column of 1s and a column containing the n observations
on the predictor variable X. The X matrix is often referred to as the design matrix.

5.2 Matrix Addition and Subtraction
1. Adding or subtracting two matrices requires that they have the same dimension.

The sum, or di昀昀erence, of two matrices is another matrix whose elements each
consist of the sum, or di昀昀erence, of the corresponding elements of the two matrices.
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2.

if Ar×c = [aij], Br×c = [bij], then A ± B = [aij]± [bij]

3. The regression model: Yi = E(Yi) + εi, i = 1, · · · , n can be written in matrix
notation:

Y = E(Y) + ε

4. The observations vector Y equals the sum of two vectors, a vector containing the
expected values and another containing the error terms.















Y1

Y2

...
Yn















=















E(Y1)

E(Y2)
...

E(Yn)















+















ε1

ε2
...
εn















=















E(Y1) + ε1

E(Y2) + ε2
...

E(Yn) + εn















5.3 Matrix Multiplication

Multiplication of a Matrix by a Scalar

1. A scalar is an ordinary number or a symbol representing a number. In multiplication
of a matrix by a scalar, every element of the matrix is multiplied by the scalar.

2. If A = [aij] and k is the scalar, then

kA = Ak = [kaij]

Multiplication of a Matrix by a Matrix

1. In general, the product AB is de昀椀ned only when the number of columns in A
equals the number of rows in B so that there will be corresponding terms in the

cross products .

2. Note that the dimension of the product AB is given by the number of rows in A
and the number of columns in B. Note also that in the second case the product BA
would not be de昀椀ned since the number of columns in B is not equal to the number
of rows in A.
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3. In general, if A = [aik] has dimension r × c and B = [bkj] has dimension c× s, the
product AB is a matrix of dimension r × s whose element in the ith row and jth
column is:

AB =

[

c
∑

k=1

aikbkj

]

Regression Examples

1. A product frequently needed is Y’Y, where Y is the vector of observations on the
response variable

Y′Y = [Y1 Y2 · · · Yn]















Y1

Y2

...
Yn















= Y 2
1 + Y 2

2 + · · ·+ Y 2
n

=
∑n

i=1 Y
2
i

2. X’X is a 2× 2 matrix:

X′X =

[

1 1 · · · 1

X1 X2 · · · Xn

]















1 X1

1 X2

... ...
1 Xn















=

[

n
∑

Xi
∑

Xi

∑

X2
i

]

3. X’Y is a 2× 1 matrix:

X′Y =

[

1 1 · · · 1

X1 X2 · · · Xn

]















Y1

Y2

...
Yn















=

[

∑

Yi
∑

XiYi

]

5.4 Special Types of Matrices
Certain special types of matrices arise regularly in regression analysis. We consider the
most important of these.

Symmetric Matrix

1. If A = A′ , A is said to be symmetric.
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2. A symmetric matrix necessarily is square .

3. Symmetric matrices arise typically in regression analysis when we premultiply a
matrix, say, X, by its transpose, X’. The resulting matrix, X′X , is symmetric.

Diagonal Matrix

1. A diagonal matrix is a square matrix whose o昀昀-diagonal elements are all
zeros .

2. We will often not show all zeros for a diagonal matrix, presenting it in the form:

B =













4

1

10

5













3. Identity Matrix The identity matrix or unit matrix is denoted by I . It
is a diagonal matrix whose elements on the main diagonal are all 1s.

4. Premultiplying or postmultlying any r × r matrix A by the r × r identity matrix I
leaves A unchanged.

AI = IA = A

5. A scalar matrix is a diagonal matrix whose main-diagonal elements are the
same . A scalar matrix can be expressed as kI , where k is the scalar.

6. Multiplying an r× r matrix A by the r× r scalar matrix kI is equivalent to multi-
plying A by the scalar k.

Vector and Matrix with All Elements Unity

1. A column vector with all elements 1 will be denoted by 1 and a square matrix
with all elements 1 will be denoted by J .
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2. Note that for an n× 1 vector 1 we obtain:

1′1 = [1 1 · · · 1]















1

1
...
1















= n

and

11′ =















1

1
...
1















[1 1 · · · 1] =









1 · · · 1
... ...
1 · · · 1









= Jn×n

Zero Vector

1. A zero vector is a vector containing only zeros. The zero column vector will be
denoted by 0 .

5.5 Linear Dependence and Rank of Matrix

Linear Dependence

1. Consider the following matrix:

A =









1 2 5 1

2 2 10 6

3 4 15 1









We view A as being made up of four column vectors. Note that the third column
vector is a multiple of the 昀椀rst column vector.









5

10

15









= 5









1

2

3









We say that the columns of A are linearly dependent . They contain redundant
information, since one column can be obtained as a linear combination of the others.
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2. We de昀椀ne the set of c column vectors C1, · · · ,Cc in an r × c matrix to be linearly
dependent if one vector can be expressed as a linear combination of the others.
If no vector in the set can be so expressed, we de昀椀ne the set of vectors to be

linearly independent .

3. When c scalars k1, · · · , kc, not all zero, can be found such that:

klC1 + k2C2 + · · ·+ kcCc = 0

where 0 denotes the zero column vector, the c column vectors are linearly dependent .
If the only set of scalars for which the equality holds is k1 = 0, · · · , kc = 0, the set
of c column vectors is linearly independent .

4. For our example, k1 = 5, k2 = 0, k3 = −1, k4 = 0 leads to:

5









1

2

3









+ 0









2

2

4









− 1









5

10

15









+ 0









1

6

1









=









0

0

0









Hence, the column vectors are linearly dependent. Note that some of the kj equal
zero here. For linear dependence, it is only required that not all kj be zero.

Rank of Matrix

1. The rank of a matrix is de昀椀ned to be the maximum number of linearly inde-
pendent columns in the matrix.

2. The rank of a matrix is unique and can equivalently be de昀椀ned as the maximum
number of linearly independent rows.

3. It follows that the rank of an r×c matrix cannot exceed min(r, c) , the minimum
of the two values r and c.

4. When a matrix is the product of two matrices, its rank cannot exceed the smaller
of the two ranks for the matrices being multiplied. Thus, if C = AB, the rank of C
cannot exceed min(rank(A), rank(B)) .
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5.6 Inverse of a Matrix
1. In matrix algebra, the inverse of a matrix A is another matrix, denoted by A−1 ,

such that
A−1A = AA−1 = I

where I is the identity matrix.

Finding the Inverse

1. An inverse of a square r × r matrix exists if the rank of the matrix is r .
Such a matrix is said to be nonsingular or of full rank.

2. An r×r matrix with rank less than r is said to be singular or not of full rank ,
and does not have an inverse. The inverse of an r × r matrix of full rank also has
rank r.

3. Finding the inverse of a matrix can often require a large amount of computing. We
shall take the approach that the inverse of a 2× 2 matrix and a 3× 3 matrix can be
calculated by hand. For any larger matrix, one ordinarily uses a computer to 昀椀nd
the inverse.

4. If

A =

[

a b

c d

]

then

A−1 =

[

a b

c d

]−1

=

[

d/D −b/D

−c/D a/D

]

where D = ad− bc , D is called the determinant of the matrix A.

5. If A were singular, its determinant would equal zero and no inverse of A would
exist.

Regression Example

1. The principal inverse matrix encountered in regression analysis is the inverse of the
matrix X′X .
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p191)

Find the inverse of the matrix X′X:

X′X =

[

n
∑

Xi
∑

Xi

∑

X2
i

]

sol:

Uses of Inverse Matrix

1. In matrix algebra, if we have an equation:

AY = C.

We correspondingly premultiply both sides by A−1, assuming A has an inverse

A−1AY = A−1C

we obtain the solution:
Y = A−1C .

5.7 Some Basic Results for Matrices
We list here, without proof, some basic results for matrices which we will utilize in later
work.

A + B = B + A
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(A + B) + C = A + (B + C)

(AB)C = A(BC)

C(A + B) = CA + CB

k(A + B) = kA + kB

(A′)′ = A

(A + B)′ = A′ + B′

(AB)′ = B′A′

(ABC)′ = C′B′A′

(AB)−1 = B−1A−1

(ABC)−1 = C−1B−1A−1

(A−1)−1 = A

(A′)−1 = (A−1)′

5.8 Random Vectors and Matrices

Expectation of Random Vector or Matrix

1. A random vector or a random matrix contains elements that are random variables .
Thus, the observations vector Y in (5.4) is a random vector since the Yi elements
are random variables.

2. The expected value of Y is a vector, denoted by E(Y), that is de昀椀ned as follows:

E(Y) = [E(Yi)] , i = 1, · · · , n.

3. For the error terms in regression model, we have

E(ε) = 0 .
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Variance-Covariance Matrix of Random Vector

1. The variance-covariance matrix of Y, denoted by σ2(Y):

σ2(Y) = E[(Y − E(Y))(Y − E(Y))′]

=





















σ2(Y1) σ2(Y1, Y2) · · · σ2(Y1, Yn)

σ2(Y2, Y1) σ2(Y2) · · · σ2(Y2, Yn)
... ... ...

σ2(Yn, Y1) σ2(Yn, Y2) · · · σ2(Yn, Yn)





















2. Note that the variances σ2(Yi) are on the main diagonal, and the covariance σ2(Yi, Yj)

is found in the ith row and jth column of the matrix.

3. The error terms in regression model have constant variance:

σ2(ε) = σ2I .

Some Basic Results

1. Frequently, we shall encounter a random vector W that is obtained by premulti-
plying the random vector Y by a constant matrix A (a matrix whose elements are
昀椀xed): W = AY. Some basic results for this case are:

E(A) = A

E(W) = E(AY) = AE(Y)

σ2(W) = σ2(AY) = Aσ2(Y)A′ ,

where σ2(Y) is the variance-covariance matrix of Y.

(111-2) Regression Analysis (I) January 24, 2023



Chapter 5: Matrix Approach to Simple Linear Regression Analysis Page 13/21

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

Suppose that a random vector W that is obtained by premultiplying the random
vector Y by a constant matrix A, that is W = AY. Find the expected value and
the variance-covariance matrix of W.

sol:

Multivariate Normal Distribution

1. The density function of the multivariate normal distribution can now be stated as
follows:

f(Y) =
1

(2π)p/2|Σ|1/2
exp

[

−
1

2
(Y − µ)′Σ−1(Y − µ)

]

,

where Y containing an observation on each of the p Y variables

Y =















Y1

Y2

...
Yp















.

2. The mean vector E(Y), denoted by µ , contains the expected values for each
of the p Y variables:

µ =















µ1

µ2

...
µp















.
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3. The variance-covariance matrix σ2(Y) is denoted by Σ : and contains as always
the variances and covariances of the p Y variables:

Σ =















σ2
1 σ12 · · · σ1p

σ21 σ2
2 · · · σ2p

... ... ...
σp1 σp2 · · · σ2

p















σ2
i denotes the variance of Y1, σij denotes the covariance of Yi and Yj.

4. The multivariate normal density function has properties that correspond to the ones
described for the bivariate normal distribution.

5. For instance, if Y1, · · · , Yp are jointly normally distributed (i.e., they follow the mul-
tivariate normal distribution), the marginal probability distribution of each variable
Yk is normal, with mean µk and standard deviation σk.

5.9 Simple Linear Regression Model in Matrix Terms
1. The normal error regression model (2.1):

Yi = β0 + β1Xi + εi, i = 1, · · · , n

2. The normal error regression model in matrix terms:

Yn×1 = Xn×2β2×1 + εn×1 ,

where

Y =















Y1

Y2

...
Yn















, X =















1 X1

1 X2

... ...
1 Xn















, β =

[

β0

β1

]

, ε =















ε1

ε2
...
εn















,

ε is a vector of independent normal random variables with E(ε) = 0 and σ2(ε) = σ2I
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5.10 Least Squares Estimation of Regression Param-
eters

Normal Equations

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p200)

Express the normal equations (1.9),

nb0 + b1
∑

Xi =
∑

Yi

b0
∑

Xi + b1
∑

X2
i =

∑

XiYi

in the matrix form
X′Xb = X′Y

where b is the vector of the least squares regression coefficients:

b2×1 =

[

b0

b1

]

sol:
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p201)

Derive the normal equations by the method of least squares in matrix notation.

sol:

Estimated Regression Coefficients

1. Obtain the estimated regression coefficients from the normal equations (5.59) by
matrix methods, We premultiply both sides by

(X′X)−1X′Xb = (X′X)−1X′Y

We then 昀椀nd, since (X′X)−1X′X = I and Ib = b,

b = (X′X)−1X′Y
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� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p200)

Use matrix methods to obtain the estimated regression coefficients for the Toluca
Company example.

sol:

5.11 Fitted Values and Residuals

Fitted Values

1. Let the vector of the 昀椀tted values Yi be denoted by Ŷ, then

Ŷ = Xb














Ŷ1

Ŷ2

...
Ŷn















=















1 X1

1 X2

... ...
1 Xn















[

b0

b1

]

=















b0 + b1X1

b0 + b1X2

...
b0 + b1Xn















2. Hat Matrix We can express the matrix result for Ŷ as follows by using the expres-
sion for b in (5.60):

Ŷ = X(X′X)−1X′Y
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or, equivalently:
Ŷ = HY

where
Hn×n = X(X′X)−1X′

3. The 昀椀tted values Ŷi can be expressed as linear combinations of the response variable
observations Yi, with the coefficients being elements of the matrix H.

4. The H matrix involves only the observations on the predictor variable X. The square
n×n matrix H is called the Hat matrix. It plays an important role in diagnostics
for regression analysis (Chapter 10) when we consider whether regression results are
unduly in昀氀uenced by one or a few observations.

5. The matrix H is symmetric and has the special property (called idempotency ):

HH = H

In general, a matrix M is said to be idempotent if MM = M.

Residuals

1. Let the vector of the residuals ei = Yi − Ŷi be denoted by e:

en×1 = Y − Ŷ = Y − Xb

2. Variance-Covariance Matrix of Residuals. The residuals ei, like the 昀椀tted val-
ues Ŷi, can be expressed as linear combinations of the response variable observations
Yi , using the result in (5.73) for Ŷ:

e = Y − Ŷ = Y − HY = (I − H)Y

We thus have the important result:

e = (I − H)Y

where H is the hat matrix de昀椀ned in (5.53a). The matrix I−H, like the matrix H,
is symmetric and idempotent.
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3. The variance-covariance matrix of the vector of residuals e involves the matrix I−H:

σ2(e) = σ2(I − H)

and is estimated by:
s2(e) = MSE(I − H)

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p204)

Show that the variance-covariance matrix of e is σ2(e) = σ2(I − H).

sol:

5.12 Analysis of Variance Results

Sums of Squares

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p204)

Express the sums of squares, SSTO, SSE and SSR in matrix notation.

sol:
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Sums of Squares as Quadratic Forms

1. In general, a quadratic form is de昀椀ned as:

Y′AY1×1 =
n

∑

i=1

n
∑

j=1

aijYiYj , where aij = aji.

2. A is a symmetric n× n matrix and is called the matrix of the quadratic form.

3. The ANOVA sums of squares SSTO, SSE, and SSR are all quadratic forms ,
as can be seen by reexpressing b′X′.

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p206)

Show that the ANOVA sums of squares SSTO, SSE, and SSR are all quadratic
forms.

sol:
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5.13 Inferences in Regression Analysis

Regression Coefficients

� Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p42)

(a) Derive the variance-covariance matrix of the simple linear regression coefficients,
b by matrix methods. (b) Obtain the estimated variance-covariance matrix of b.

sol:

Mean Response∗

Prediction of New Observation∗

� TA Class'

&

$

%

• Problems: 5.5, 5.16, 5.22, 5.24, 5.26

• Exercises: 5.31
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Regression Analysis (I)
Kutner’s Applied Linear Statistical Models (5/E)

Chapter 6: Multiple Regression (I)

Thursday 09:10-12:00, 商館 260205
Han-Ming Wu

Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

Overview
1. Discuss a variety of multiple regression models. (more than one predictors)

2. Present the basic statistical results for multiple regression in matrix form .

3. The matrix expressions for multiple regression are the same as for SLR.

4. An example to illustrate a variety of inferences and residual analyses in
multiple regression analysis.

6.1 Multiple Regression Models

Need for Several Predictor Variables

1. A single predictor variable in the model would have provided an inadequate
description since a number of key variables a昀昀ect the response variable.

2. Predictions of the response variable based on a model containing only a single
predictor variable are too imprecise to be useful.
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3. Multiple regression analysis is highly useful in experimental situations where the
experimenter can control the predictor variables .

4. The multiple regression models can be utilized for either observational data or
for experimental data from a completely randomized design.

First-Order Model with Two Predictor Variables

1. When there are two predictor variables X1 and X2, the regression model:

Yi = β0 + β1Xi1 + β2Xi2 + εi (6.1)

is called a 昀椀rst-order model with two predictor variables.

2. Assuming that E(ε) = 0 , the regression function for model (6.1) is a plane :

E(Y ) = β0 + β1X1 + β2X2 (6.2)

3. (Figure 6.1) The response plane: E(Y ) = 10 + 2X1 + 5X2 (6.3).

(a) Any point on the response plane (6.3) corresponds to the mean response E(Y )

at the given combination of levels of X1 and X2 .
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(b) The error term εi = Yi − E(Yi) : the vertical rule between Yi and the
response plane represents the di昀昀erence between Yi and the mean E(Yi) of the
probability distribution of Y for the given (Xi1, Xi2) combination.

4. The regression function in multiple regression is called a regression surface or
a response surface . In Figure 6.1, the response surface is a plane , but in
other cases the response surface may be more complex in nature.

5. Meaning of Regression Coefficients

(a) The parameter β0 is the Y intercept of the regression plane.

(b) If the scope of the model includes X1 = 0, X2 = 0 , then β0 represents the
mean response E(Y ) at X1 = 0, X2 = 0. Otherwise, β0 does not have
any particular meaning as a separate term in the regression model.

(c) The parameter β1 (β2) indicates the change in the mean response E(Y )

per unit increase in X1 (X2) when X2 (X1) is held constant.

(d) When the e昀昀ect of X1 on the mean response does not depend on the level
of X2, and correspondingly the e昀昀ect of X2 does not depend on the level of
X1, the two predictor variables are said to have additive e昀昀ects or not to

interact .

(e) Thus, the 昀椀rst-order regression model (6.1) is designed for predictor variables
whose e昀昀ects on the mean response are additive or do not interact.

6. The parameters β1 and β2 are sometimes called partial regression coefficients
because they re昀氀ect the partial e昀昀ect of one predictor variable when the other pre-
dictor variable is included in the model and is held constant .

First-Order Model with More than Two Predictor Variables

1. The regression model:

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi (6.5)

= β0 +

p−1
∑

k=1

βkXik + εi (6.5a)
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=
p−1
∑

k=0

βkXik + εi where Xi0 ≡ 1 (6.5b)

is called a 昀椀rst-order model with p− 1 predictor variables.

2. Assuming that E(εi) = 0, the response function for regression model (6.5) is:

E(Y ) = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 (6.6)

3. This response function is a hyperplane , which is a plane in more than two
dimensions.

4. The parameter βk indicates the change in the mean response E(Y ) with a unit
increase in the predictor variable Xk when all other predictor variables in the re-
gression model are held constant.

5. The 昀椀rst-order regression model (6.5) is designed for predictor variables whose e昀昀ects
on the mean response are additive and therefore do not interact.

General Linear Regression Model

1. De昀椀ne the general linear regression model, with normal error terms, simply in terms
of X variables:

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi (6.7)

where:

(a) β0, β1, · · · , βp−1 are parameters .

(b) Xi1, · · · , Xi,p−1 are known constants (predictors, explanatory variables).

(c) εi are independent N(0, σ2) , i = 1, · · · , n.

2. The response function for regression mode1 (6.7) is:

E(Y ) = β0 + β1X1 + β2X2 + · · ·+ βp−1Xp−1 (6.8)

3. Thus, the general linear regression model with normal error terms implies that the
observations Yi are independent normal variables , with mean E(Y ) as
given by (6.8) and with constant variance σ2 .
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4. Qualitative Predictor Variables

(a) The general linear regression model (6.7) encompasses not only quantitative
predictor variables but also qualitative ones, such as gender (male, fe-
male) or disability status (not disabled, partially disabled, fully disabled).

(b) Use indicator variables that take on the values 0 and 1 to identify
the classes of a qualitative variable.

(c)
�

�

�

�
Example Consider a regression analysis to predict the length of hospital stay

(Y ) based on the age (X1) and gender (X2) of the patient. The 昀椀rst-order
regression model is:

Yi = β0 + β1Xi1 + β2Xi2 + εi (6.9)

Xi1 = ith patient’s age

Xi2 =

{

1 if ith patient female
0 if ith patient male

The response function for regression model (6.9) is:

E(Y ) = β0 + β1X1 + β2X2 (6.10)

For male patients, X2 = 0 and response function (6.10) becomes:

E(Y ) = β0 + β1X1 , Male patients (6.10a)

For female patients, X2 = 1 and response function (6.10) becomes:

E(Y ) = (β0 + β2) + β1X1 , Female patients (6.10b)

These two response functions represent parallel straight lines with di昀昀er-
ent intercepts.

(d) In general, we represent a qualitative variable with c classes by means of
c− 1 indicator variables. (details in Chapter 8)

5.
�

�

�

�
Example The 昀椀rst-order model with age, gender (male, female) or disability status

(not disabled, partially disabled, fully disabled) as predictor variables then is:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + εi (6.11)
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where:

Xi1 = ith patient’s age

Xi2 =

{

1 if ith patient female
0 if ith patient male

Xi3 =

{

1 if ith patient not disabled
0 otherwise

Xi4 =

{

1 if ith patient partially disabled
0 otherwise

6. Polynomial Regression

(a) Polynomial regression models are special cases of the general linear regres-
sion model. They contain squared and higher-order terms of the
predictor variable(s), making the response function curvilinear .

(b)
�

�

�

�
Example A polynomial regression model with one predictor variable:

Yi = β0 + β1Xi + β2X
2
i + εi (6.12)

(c) If we let Xi1 = Xi and Xi2 = X2
i ; we can write (6.12) as

Yi = β0 + β1Xi1 + β2Xi2 + εi

which is in the form of general linear regression model (6.7). (detail in Chapter
8).

7. Transformed Variables

(a) Models with transformed variables involve complex, curvilinear response func-
tions, yet still are special cases of the general linear regression model.

(b)
�

�

�

�
Example A model with a transformed Y

′

i = logYi variable:

Y
′

i = logYi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi.

(c)
�

�

�

�
Example A model with a transformed Y

′

i = 1/Yi variable:

Y
′

i = 1/Yi = β0 + β1Xi1 + β2Xi2 + εi.

(111-2) Regression Analysis (I) January 24, 2023



Chapter 6: Multiple Regression (I) Page 7/27

8. Interaction E昀昀ects

(a) When the e昀昀ects of the predictor variables on the response variable are not
additive, the e昀昀ect of one predictor variable depends on the levels of the other
predictor variables. The general linear regression model (6.7) encompasses
regression models with nonadditive or interacting e昀昀ects .

(b)
�

�

�

�
Example An example of a nonadditive regression model with two predictor

variables X1 and X2:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

= β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

The response function is complex because of the interaction term Xi3 = Xi1Xi2 .
It is a special case of the general linear regression model. (detail in Chapter 8)

9. Combination of Cases

(a) A regression model may combine several of the elements we have just noted
and still be treated as a general linear regression model.

(b)
�

�

�

�
Example Consider the following regression model containing linear and quadratic

terms for each of two predictor variables and an interaction term represented
by the cross-product term:

Yi = β0 + β1Xi1 + β2X
2
i1 + β3Xi2 + β4X

2
i2 + β5Xi1Xi2 + εi

= β0 + β1Zi1 + β2Zi2 + β3Zi3 + β4Zi4 + β5Zi5 + εi.

(c) (Figure 6.2) Two complex response surfaces.
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10. Meaning of Linear in General Linear Regression Model

(a) It should be clear from the various examples that general linear regression
model (6.7) is not restricted to linear response surfaces.

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi (6.7)

The term linear model refers to the fact that model (6.7) is linear in the
parameters ; it does-not refer to the shape of the response surface .

(b) We say that a regression model is linear in the parameters when it can be
written in the form:

Yi = ci0β0 + ci1β1 + ci2β2 + · · · ci,p−1βp−1 + εi ,

where the terms ci0, ci1, etc., are coefficients involving the predictor variables .

(c) An example of a nonlinear regression model is the following:

Yi = β0 exp(β1Xi) + εi

This is a nonlinear regression model because it cannot be expressed in
the form of (6.17). (nonlinear regression models in Part III)
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6.2 General Linear Regression Model in Matrix Terms
1. We now present the principal results for the general linear regression model (6.7) in

matrix terms. The matrix notation may hide enormous computational complexities.

2. The actual computations will, in all but the very simplest cases, be done by com-
puter.

3. Express general linear regression model (6.7):

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi (6.7)

in matrix terms:
Yn×1 = Xn×pβp×1 + εn×1 ,

where

Y =















Y1

Y2

...
Yn















, X =















1 X11 X12 · · · X1,p−1

1 X21 X22 · · · X2,p−1

... ...
1 Xn1 Xn2 · · · Xn,p−1















,

β =















β0

β1

...
βp−1















, ε =















ε1

ε2
...
εn















,

4. ε is a vector of independent normal random variables with E(ε) = 0 and
σ2(ε) = σ2I .

5. The random vector Y has expectation: E(Y) = Xβ , and the variance-covariance
matrix of Y is the same as that of ε: σ2(Y) = σ2I .
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6.3 Estimation of Regression Coefficients
1. The least squares criterion (1.8) is generalized as follows for general linear regression

model (6.7):

Q =
∑n

i=1(Yi − β0 − β1Xi1 − · · · − βp−1Xi,p−1)
2 (6.22)

2. The least squares estimators are those values of β0, β1, · · · , βp−1 that minimize Q .

3. The least squares normal equations for the general linear regression model (6.19)
are:

X′Xb = X′Y (6.24)

4. The least squares estimators are:

b = (X′X)−1X′Y (6.25)

5. The method of maximum likelihood leads to the same estimators for normal error
regression model (6.19) as those obtained by the method of least squares in (6.25).

6. The likelihood function in (1.26) generalizes directly for multiple regression:

L(β, σ2) =
1

(2πσ2)n/2
exp

{

− 1

2σ2

n
∑

i=1

(Yi − β0 − β1Xi1 − · · · − βp−1Xi,p−1)
2

}

(6.26)

7. Maximizing this likelihood function with respect to β0, β1, · · · , βp−1 leads to the es-
timators in (6.25). These estimators are least squares and maximum likelihood esti-
mators and have all the properties mentioned in Chapter 1: they are minimum variance unbiased ,

consistent , and sufficient .

6.4 Fitted Values and Residuals
1. Let the vector of the 昀椀tted values Ŷi be denoted by Ŷ and the vector of the residual

terms ei = Yi − Ŷi be denoted by e:
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Ŷ =















Ŷ1

Ŷ2

...
Ŷn















, e =















e1

e2
...
en















,

2. The 昀椀tted values: Ŷ = Xb .

3. The vector of the 昀椀tted values Ŷ can be expressed in terms of the hat matrix H as
follows:

Ŷ = HY , where H = X(X′X)−1X′

(6.30)

4. The residual terms: e = Y − Ŷ = Y − Xb .

5. Similarly, the vector of residuals can be expressed: e = (I − H)Y .

6. The variance-covariance matrix of the residuals is: σ2(e) = σ2(I − H) which is
estimated by:

s2(e) = MSE(I − H) (6.33)

6.5 Analysis of Variance Results

Sums of Squares and Mean Squares

1. The sums of squares for the analysis of variance in matrix terms are, from (5.89):

SSTO = Y′Y −
(

1

n

)

Y′JY = Y′

[

I −
(

1

n

)

J
]

Y

SSE = e′e = (Y − Xb)′(Y − Xb) = Y′Y − b′X′Y = Y′(I − H)Y

SSR = b′X′Y −
(

1

n

)

Y′JY = Y′

[

H −
(

1

n

)

J
]

Y

where J is an n× n matrix of 1s de昀椀ned in (5.18) and H is the hat matrix de昀椀ned
in (6.30a).
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2. (Table 6.1) ANOVA Table for general linear regression:

F Test for Regression Relation

1. To test whether there is a regression relation between the response variable Y and
the set of X variables X1, · · · , Xp,

H0 : β1 = β2 = · · · = βp−1 = 0

Ha : not all βk, (k = 1, · · · , p− 1) equal zero

2. The test statistic:
F ∗ = MSR

MSE
.

3. The decision rule to control the Type I error at α:

If F ∗ > F(1−α;p−1,n−p), reject H0.

Coefficient of Multiple Determination

1. The coefficient of multiple determination, denoted by R2, is de昀椀ned as

R2 =
SSR

SSTO
= 1− SSE

SSTO
(6.40)

2. It measures the proportionate reduction of total variation in Y associated with
the use of the set of X variables X1, · · · , Xp−1.

3. 0 ≤ R2 ≤ 1 assumes the value 0 when all bk = 0 (k = 1, · · · , p− 1) , and the
value 1 when all Y observations fall directly on the 昀椀tted regression surface, ie.,
when Yi = Ŷi for all i.
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4. Adding more X variables to the regression model can only increase R2 and
never reduce it, because SSE can never become larger with more X variables and
SSTO is always the same for a given set of responses.

5. Since R2 usually can be made larger by including a larger number of predictor
variables, it is sometimes suggested that a modi昀椀ed measure be used that adjusts
for the number of X variables in the model.

6. The adjusted coefficient of multiple determination, denoted by R2
a, adjusts R2

by dividing each sum of squares by its associated degrees of freedom:

R2
a = 1− SSE/(n− p)

SSTO/(n− 1)
= 1−

(

n− 1

n− p

)

SSE

SSTO

This adjusted coefficient of multiple determination may actually become smaller
when another X variable is introduced into the model, because any decrease in
SSE may be more than o昀昀set by the loss of a degree of freedom in the denominator
n− p.

7.
�

�

�

�Comments A large value of R2 does not necessarily imply that the 昀椀tted model is
a useful one. For instance, observations may have been taken at only a few levels of
the predictor variables. Despite a high R2 in this case, the 昀椀tted model may not be
useful if most predictions require extrapolations outside the region of observations.
Again, even though R2 is large, MSE may still be too large for inferences to be
useful when high precision is required.

Coefficient of Multiple Correlation

1. The coefficient of multiple correlation R is the positive square root of

R =
√
R2

6.6 Inferences about Regression Parameters
1. The least squares and maximum likelihood estimators in b are unbiased :

E{b} = β (6.44)
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2. The variance-covariance matrix (dimension p× p):

σ2{b} = σ2(X′X)−1 (6.46)

3. The estimated variance-covariance matrix (dimension p× p):

s2{b} = MSE(X′X)−1 (6.48)

Interval Estimation of βk

1. For the normal error regression model (6.19), we have:

bk − βk

s{bk}
∼ t(n−p) , k = 0, 1, ..., p− 1 (6.49)

2. The con昀椀dence limits for βk with 1− α con昀椀dence coefficient are:

bk ± t(1−α/2;n−p)s{bk} (6.50)

Tests for βk

1. The test hypothesis:

H0 : βk = 0 against Ha : βk ̸= 0

2. The test statistic:
t∗ =

bk

s{bk}
3. The decision rule:

If |t∗| ≥ t(1−α/2;n−p), reject H0 .

4. The power of the t test can be obtained as explained in Chapter 2, with
the degrees of freedom modi昀椀ed to n − p. As with simple linear regression, an

F test can also be conducted to determine whether or not βk = 0 in multiple
regression models. (details in Chapter 7).
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Joint Inferences∗

6.7 Estimation of Mean Response and Prediction of
New Observation∗

Interval Estimation of E{Yh}

Con昀椀dence Region for Regression Surface

Simultaneous Con昀椀dence Intervals for Several Mean Responses

Prediction of New Observation Yh(new)

Prediction of Mean of m New Observations at Xh

Predictions of g New Observations

Caution about Hidden Extrapolations

6.8 Diagnostics and Remedial Measures
1. Diagnostics play an important role in the development and evaluation of

multiple regression models.

2. Most of the diagnostic procedures for SLR (Chapter 3) carry over directly to
multiple regression.

3. Many specialized diagnostics and remedial procedures for multiple regression have
also been developed (details in Chapters 10 and 11.)

Scatter Plot Matrix

1. Univariate plots: Box plots, sequence plots, stem-and-leaf plots, and dot plots
for each of the predictor variables and for the response variable can provide helpful,
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preliminary univariate information about these variables.

2. Bivariate plots: Scatter plots

(a) Scatter plots of the response variable against each predictor variable
can aid in determining the nature and strength of the bivariate relationships
between each of the predictor variables and the response variable and in iden-
tifying gaps in the data points as well as outlying data points.

(b) Scatter plots of each predictor variable against each of the other predictor vari-
ables are helpful for studying the bivariate relationships among the predictor
variables and for 昀椀nding gaps and detecting outliers .

3. Multiivariate plots: Scatter plot matrix

(a) (Figure 6.4) the Y variable for anyone scatter plot is the name found in its
row , and the X variable is the name found in its column .

(b) The scatter plot matrix in Figure 6.4 shows in the 昀椀rst row the plots of Y

(SALES) against X1 (TARGETPOP) and X2 (DISPOINC), of X1 against Y

and X2 in the second row, and of X2 against Y and X1 in the third row. (These
variables are described on page 236.)

(c) Scatter plot matrix facilitates the study of the relationships among the vari-
ables by comparing the scatter plots within a row or a column.

4. A complement to the scatter plot matrix that may be useful at times is the correlation matrix .
This matrix contains the coefficients of simple correlation rY 1, rY 2, · · · , rY,p−1
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between Y and each of the predictor variables Xi, i = 1, · · · , p−1, as well as all of the
coefficients of simple correlation among the predictor variables: r12 between
X1 and X2, r13 between X1 and X3, etc.

5. Note that the correlation matrix is symmetric and that its main diagonal
contains 1s because the coefficient of correlation between a variable and itself
is 1 .

Three-Dimensional Scatter Plots

1. Some interactive statistics packages provide three-dimensional scatter plots or
point clouds, and permit spinning of these plots to enable the viewer to see
the point cloud from di昀昀erent perspectives or patterns. (Figure 6.6)

Residual Plots

1. plot(ei ∼ Ŷi): A plot of the residuals against the 昀椀tted values is useful
for assessing the appropriateness of the multiple regression function and the

constancy of the variance of the error terms, as well as for providing informa-
tion about outliers , just as for simple linear regression.

2. plot(ei ∼ time): A plot of the residuals against time or against some
other sequence can provide diagnostic information about possible correlations
between the error terms in multiple regression.

3. boxplot(ei), qqnorm(ei): Box plots and normal probability plots of the residuals
are useful for examining whether the error terms are reasonably normally
distributed.

4. plot(ei ∼ Xi): The plot of the residuals against each of the predictor variables
can provide further information about the adequacy of the regression function with
respect to that predictor variable (e.g., whether a curvature e昀昀ect is required for that
variable) and about possible variation in the magnitude of the error variance
in relation to that predictor variable.

5. plot(ei ∼ Xomit): Plot the residuals against important predictor variables that
were omitted from the model, to see if the omitted variables have substantial ad-
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ditional e昀昀ects on the response variable that have not yet been recognized in the
regression model.

6. plot(ei ∼ XiXj): Plot the residuals against interaction terms for potential interac-
tion e昀昀ects not included in the regression model, such as against X1X2, X1X3, and
X2X3, to see whether some or all of these interaction terms are required in the
model.

7. plot(|ei| ∼ Ŷi), plot(e2i ∼ Ŷi): A plot of the absolute residuals or the squared
residuals against the 昀椀tted values is useful for examining the constancy of the
variance of the error terms.

8. plot(|ei| ∼ Xi), plot(e2i ∼ Xi): If nonconstancy is detected, a plot of the abso-
lute residuals or the squared residuals against each of the predictor variables may
identify one or several of the predictor variables to which the magnitude of the

error variability is related.

Correlation Test for Normality∗

1. The correlation test for normality described in Chapter 3 carries forward directly
to multiple regression.

Brown-Forsythe Test for Constancy of Error Variance

1. The Brown-Forsythe test statistic (3.9) for assessing the constancy of the error
variance can be used readily in multiple regression when the error variance increases
or decreases with one of the predictor variables.

2. To conduct the Brown-Forsythe test, we divide the data set into two groups ,
as for simple linear regression, where one group consists of cases where the level of
the predictor variable is relatively low and the other group consists of cases
where the level of the predictor variable is relatively high .

3. The Brown-Forsythe test then proceeds as for simple linear regression.
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Breusch-Pagan Test for Constancy of Error Variance∗

F Test for Lack of Fit

1. The lack of 昀椀t F test (Chapter 3) for SLR can be carried over to test whether the
multiple regression response function:

E[Y ] = β0 + β1X1 + · · ·+ βp−1Xp−1

is an appropriate response surface.

2. Repeat observations in multiple regression are replicate observations on Y

corresponding to levels of each of the X variables that are constant from trial to
trial.

3. With two predictor variables, repeat observations require that X1 and X2 each
remain at given levels from trial to trial.

4. Once the ANOVA table (Table 6.1), has been obtained, SSE is decomposed into
the pure error sum of squares (SSPE) and the lack of 昀椀t sum of squares (SSLF).

5. SSPE is obtained by 昀椀rst calculating for each replicate group the sum of squared
deviations of the Y observations around the group mean, where a replicate group
has the same values for each of the X variables.

6. Let c denote the number of groups with distinct sets of levels for the X variables ,
and let the mean of the Y observations for the jth group be denoted by Ȳj. Then the
pure error sum of squares is ∑

j

∑

i(Yij − Ȳj) . The lack of 昀椀t sum of squares
SSLF equals the di昀昀erence SSE − SSPE .

7. Test hypothesis:

H0 : E{Y } = β0 + β1X1 + · · ·+ βp−1Xp−1

Ha : E{Y } ̸= β0 + β1X1 + · · ·+ βp−1Xp−1

8. Test statistic:
F ∗ =

SSLF

c− p
÷ SSPE

n− c
=

MSLF

MSPE

9. Decision rule:

If F ∗ > F(1−α;c−p,n−p), reject H0 .

(111-2) Regression Analysis (I) January 24, 2023



Chapter 6: Multiple Regression (I) Page 20/27

Remedial Measures

1. The remedial measures described in Chapter 3 are also applicable to multiple re-
gression.

2. When a more complex model is required to recognize curvature or interaction
e昀昀ects, the multiple regression model can be expanded to include these e昀昀ects.

3. Transformations on the response variable Y may be helpful when the distribu-
tions of the error terms are quite skewed and the variance of the error terms
is not constant .

4. Transformations of some of the predictor variables may be helpful when the e昀昀ects,
of these variables are curvilinear .

5. Transformations on Y and/or the predictor variables may be helpful in eliminating
or substantially reducing interaction e昀昀ects .

6. The usefulness of potential transformations needs to be examined by means of
residual plots and other diagnostic tools to determine whether the mul-

tiple regression model for the transformed data is appropriate.

7. Box-Cox Transformations is also applicable to multiple regression models.

6.9 An Example - Multiple Regression with Two Pre-
dictor Variables

Setting

1. (Figure 6.5a) Dwaine Studios, Inc., operates portrait studios in 21 cities (n = 21)
of medium size. These studios specialize in portraits of children. The company is
considering an expansion into other cities of medium size and wishes to investigate
whether sales (Y or SALES, in thousands of dollars) in a community can be pre-
dicted from the number of persons aged 16 or younger in the community (X1 or
TARGTPOP for target population) and the per capita disposable (平均每人可支配
所得) personal income in the community (X2 or DISPOINC for disposable income
in thousands of dollars).

(111-2) Regression Analysis (I) January 24, 2023



Chapter 6: Multiple Regression (I) Page 21/27

2. The 昀椀rst-order regression model:

Yi = β0 + β1Xi1 + β2Xi2 + εi

with normal error terms is expected to be appropriate, on the basis of the scatter
plot matrix in Figure 6.4a.

3. Note the linear relation between target population and sales and between dis-
posable income and sales.

4. Also note that there is more scatter between disposable income and sales re-
lationship.

5. Finally note that there is also some linear relationship between the two pre-
dictor variables.

6. (Figure 6.6) A 3D plot of the point cloud supports the tentative conclusion that a
response plane may be a reasonable regression function to utilize here.
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Basic Calculations

1. The X and Y matrices for the Dwaine Studios example:

X =















1 68.5 16.7

1 45.2 16.8
... ... ...
1 52.3 16.0















Y =















174.4

164.4
...

166.5















2.

(X′X)−1 =









29.7289 0.0722 −1.9926

0.0722 0.00037 −0.0056

−1.9926 −0.0056 0.1363









3.

X′Y =









3.820

249.643

66.073
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Estimated Regression Function

1. The least squares estimates b are readily obtained by

b = (X′X)−1X′Y =









−68.857

1.455

9.366









2. The estimated regression function is:

Ŷ = −68.857 + 1.455X1 + 9.366X2

3. (Figure 6.7) A 3D plot of the estimated regression function, with the responses
super-imposed. The residuals are represented by the small vertical lines connecting
the responses to the estimated regression surface.

4. This estimated regression function indicates that mean sales are expected to increase by 1.455
thousand dollars when the target population increases by 1 thousand persons aged
16 years or younger, holding per capita disposable personal income constant, and
that mean sales are expected to increase by 9.366 thousand dollars when per
capita income increases by 1 thousand dollars, holding the target population con-
stant.

5. (Figure 6.5a) Software output for the Dwaine Studios example.

(111-2) Regression Analysis (I) January 24, 2023



Chapter 6: Multiple Regression (I) Page 24/27

Fitted Values and Residuals

1. The 昀椀tted values

Ŷ = Xb =















187.2

154.2
...

157.1















2. The residuals

e = Y − Ŷ =















−12.8

10.2
...
9.4















Analysis of Appropriateness of Model

1. (Figure 6.8a) Begin analysis of the appropriateness of regression model by consider-
ing the plot of the residuals ei against the 昀椀tted values Y in Figure 6.8a. This plot
does not suggest any systematic deviations from the response plane nor that
the variance of the error terms varies with the level of Ŷ .
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2. (Figures 6.8b, 6.8c) Plots of the residuals e against X1 and X2 are entirely consistent
with the conclusions of good 昀椀t by the response function and constant variance
of the error terms.

3. If a plot of the residuals e against the interaction term X1X2 shows a systematic pattern ,
that means an interaction e昀昀ect may be present, so that a response function of the
type

E{Y } = β0 + β1X1 + β2X2 + β3X1X2

might be more appropriate.

4. (Figure 6.8d) Plot does not exhibit any systematic pattern ; hence, no interac-
tion e昀昀ects re昀氀ected by the model term X1X2 appear to be present.

5. (Figure 6.9a) A plot of the absolute residuals against the 昀椀tted values. There is no
indication of nonconstancy of the error variance.

6. (Figure 6.9b) A normal probability plot of the residuals shows a moderately linear
pattern.

7. The coefficient of correlation between the ordered residuals and their expected
values under normality is 0.980 . This high value helps to con昀椀rm the reason-
ableness of the conclusion that the error terms are fairly normally distributed.
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8. Since the Dwaine Studios data are cross-sectional and do not involve a time se-
quence, a time sequence plot is not relevant here. Thus, all of the diagnostics

support the use of regression model (6.69) for the Dwaine Studios example.

Analysis of Variance

1. To test whether sales are related to target population and per capita disposable
income, we require the ANOVA table.

2. Test of Regression Relation. To test whether sales are related to target popu-
lation and per capita disposable income:

H0 : β1 = 0 and β2 = 0
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Ha : not both β1 and β2 equal zero

Test statistic:
F ∗ = 99.1

For α = 0.05, we require F(0.95;2.18) = 3.55. Since F ∗ = 99.1 > 3.55, we conclude Ha

(reject H0), that sales are related to target population and per capita disposable
income. The P-value for this test is 0.0000.

3. Coefficient of Multiple Determination.

R2 = 0.917

Thus, when the two predictor variables, target population and per capita disposable
income, are considered, the variation in sales is reduced by 91.7 percent . The
adjusted coefficient of multiple determination R2 = 0.907.

Estimation of Regression Parameters∗

Estimation of Mean Response∗

Prediction Limits for New Observations∗

� TA Class'

&

$

%

• Problems: 6.5 (a-d, f), 6.6 (a, b), 6.9, 6.10 (a-d)

• Exercises: 6.22
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Regression Analysis (I)
Kutner’s Applied Linear Statistical Models (5/E)

Chapter 7: Multiple Regression (II)

Thursday 09:10-12:00, 商館 260205
Han-Ming Wu

Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

Overview
1. Some specialized topics that are unique to multiple regression: (1) extra sums of

squares, (2) the standardized version of the multiple regression model, and (3)
multicollinearity.

7.1 Extra Sums of Squares

Basic Ideas

1. An extra sum of squares measures the marginal reduction in the error
sum of squares when one or several predictor variables are added to the re-

gression model, given that other predictor variables are already in the model.

2. Equivalently, one can view an extra sum of squares as measuring the marginal
increase in the regression sum of squares when one or several predictor

variables are added to the regression model.

3.
�

�

�

�
Example (Table 7.1) A portion of the data for a study of the relation of amount

of body fat (Y ) to several possible predictor variables, based on a sample of 20
healthy females 25 − 34 years old. The possible predictor variables are triceps
skinfold thickness (X1)(三頭肌皮下脂肪厚度), thigh circumference (X2)(大腿圍),
and midarm circumference (X3) (中臂圍).

(111-2) Regression Analysis (I) January 24, 2023

http://www.hmwu.idv.tw


Chapter 7: Multiple Regression (II) Page 2/23

4. Background and goal: The amount of body fat in Table 7.1 for each of the 20 persons
was obtained by a cumbersome and expensive procedure requiring the immersion
of the person in water. It would therefore be very helpful if a regression model
with some or all of these predictor variables could provide reliable estimates of the
amount of body fat since the measurements needed for the predictor variables are
easy to obtain.

5. (Table 7.2) Conduct four regression results when body fat (Y ) is regressed on triceps
skinfold thickness (X1) alone, (2) on thigh circumference (X2) alone, (3) on X1, and
X2 only, and (4) on all three predictor variables. The total sum of squares is
SSTO = 495.39 .

(a) (Table 7.2a) The regression sum of squares when X1, only is in the model is,
SSR(X1) = 352.27 . The error sum of squares for this model is SSE(X1) = 143.12 .
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(b) (Table 7.2c) When X1 and X2 are in the regression model, the regression
sum of squares is SSR(X1, X2) = 385.44 and the error sum of squares is
SSE(X1, X2) = 109.95 .

(c) Notice that the error sum of squares when X1 and X2 are in the model,
SSE(X1, X2) = 109.95 , is smaller than when the model contains only

X1, SSE(X1) = 143.12 .

(d) The di昀昀erence is called an extra sum of squares and will be denoted by
SSR(X2|X1) :

SSR(X2|X1) = SSR(X1, X2)− SSR(X1)

= 385.44− 352.27 = 33.17

= (SSTO − SSE(X1, X2))− (SSTO − SSE(X1))

= SSE(X1)− SSE(X1, X2)

= 143.12− 109.95 = 33.17

This reduction in the error sum of squares is the result of adding X2

to the regression model when X1 , is already included in the model.
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(e) Thus, the extra sum of squares SSR(X2|X1) measures the marginal e昀昀ect
(additional or extra reduction) of adding X2 to the regression model when X1,
is already in the model.

(f) The reason for the equivalence of the marginal reduction in the error sum
of squares and the marginal increase in the regression sum of squares is
the basic analysis of variance identity:

SSTO = SSR + SSE

Since SSTO measures the variability of the Yi observations and hence
does not depend on the regression model 昀椀tted, any reduction in SSE implies
an identical increase in SSR.

6. (Tables 7.2c, 7.2d) We can consider other extra sums of squares, such as the marginal
e昀昀ect of adding X3 to the regression model when X1, and X2 are already in the
model.

SSR(X3|X1, X2) = SSE(X1, X2)− SSE(X1, X2, X3) = 109.95−98.41 = 11.54

or, equivalently:

SSR(X3|X1, X2) = SSR(X1, X2, X3)− SSR(X1, X2) = 396.98−385.44 = 11.54.

7. (table 7.2a, 7.2d) We can even consider the marginal e昀昀ect of adding several vari-
ables, such as adding both X2 and X3 to the regression model already containing
X1.

SSR(X2, X3|X1) = SSE(X1)− SSE(X1, X2, X3) = 143.12−98.41 = 44.71

or, equivalently:

SSR(X2, X3|X1) = SSR(X1, X2, X3)− SSR(X1) = 396.98−352.27 = 44.71

De昀椀nitions

1. An extra sum of squares always involves the di昀昀erence between the error sum
of squares for the regression model containing the X variable(s) already in the

model and the error sum of squares for the regression model containing both the
original X variable(s) and the new X variable(s).
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2. Equivalently, an extra sum of squares involves the di昀昀erence between the two cor-
responding regression sums of squares .

3. Thus, we de昀椀ne:

SSR(X1|X2) = SSE(X2)− SSE(X1, X2) (7.1a)

or, equivalently:

SSR(X1|X2) = SSR(X1, X2)− SSR(X2) (7.1b)

4. If X2 is the extra variable, We de昀椀ne:

SSR(X2|X1) = SSE(X1)− SSE(X1, X2) (7.2a)

or, equivalently:

SSR(X2|X1) = SSR(X1, X2)− SSR(X1) (7.2b)

5. Extensions for three or more variables are straightforward:

SSR(X3|X1, X2) = SSE(X1, X2)− SSE(X1, X2, X3) (7.3a)

or:

SSR(X3|X1, X2) = SSR(X1, X2, X3)− SSR(X1, X2) (7.4b)

and

SSR(X2, X3|X1) = SSE(X1)− SSE(X1, X2, X3) (7.4a)

or:

SSR(X2, X3|X1) = SSR(X1, X2, X3)− SSR(X1) (7.4b)

Decomposition of SSR into Extra Sums of Squares

1. In multiple regression, we can obtain a variety of decompositions of SSR into
extra sums of squares.
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2. Consider the multiple regression model with two X variables:

Yi = β0 + β1X1i + β2X2i + ϵi, i = 1, ·, n

3. Begin with the identity for X1:

SSTO = SSR(X1) + SSE(X1) (7.5)

when X1 is the X variable in th model. Replacing SSE(X1) by its equivalent in
(7.2a): SSR(X2|X1) = SSE(X1)− SSE(X1, X2) , we obtain:

SSTO = SSR(X1) + SSR(X2|X1) + SSE(X1, X2) (7.6)

4. Use the same identity for multiple regression with two X variables as in (7.5) for a
single X variable:

SSTO = SSR(X1, X2) + SSE(X1, X2) (7.7)

Solving (7.7) for SSE(X1, X2) and using this expression in (7.6) lead to:

SSR(X1, X2) = SSR(X1) + SSR(X2|X1) (7.8)

5. We have decomposed SSR(X1, X2) into two marginal components:

(a) SSR(X1) : measuring the contribution by including X1 alone in the
model.

(b) SSR(X2|X1) : measuring the additional contribution when X2 is included,
given that X1 is already in the model.

6. The order of the X variables is arbitrary:

SSR(X1, X2) = SSR(X2) + SSR(X1|X2) (7.9)

7.
�

�

�

�
Example Body Fat Example

(a) A sample of n = 20 healthy females 25 − 34 years old; Y : amount of body
fat; X1: triceps skinfold thickness; X2: thigh circumference; X3: midarm
circumference.
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(b) (Figure 7.1): The extra sum of squares can be viewed either as a reduction in SSE

or as an increase in SSR when the second predictor variable is added to
the regression model.

8. When the regression model contains three X variables, a variety of decompositions
of SSR(X1, X2, X3) can be obtained. We illustrate three of these:

SSR(X1, X2, X3) = SSR(X1) + SSR(X2|X1) + SSR(X3|X1, X2) (7.10a)

SSR(X1, X2, X3) = SSR(X2) + SSR(X3|X2) + SSR(X1|X2, X3) (7.10b)

SSR(X1, X2, X3) = SSR(X1) + SSR(X2, X3|X1) (7.10e)

9. The number of possible decompositions becomes vast as the number of X

variables in the regression model increases .
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ANOVA Table Containing Decomposition of SSR

1. (Table 7.3, 7.4) ANOVA tables can be constructed containing decompositions of the
regression sum of squares into extra sums of squares.

2. Note that each extra sum of squares involving a single extra X variable has
associated with it one degree of freedom.

3. Extra sums of squares involving two extra X variables, such as SSR(X2, X3|X1),
have two degrees of freedom associated with them: an extra sum of squares as a
sum of two extra sums of squares, each associated with one degree of freedom.

4. Many computer regression packages provide decompositions of SSR into single -
degree-of-freedom extra sums of squares, usually in the order in which the X vari-
ables are entered into the model .

5. If the X variables are entered in the order X1, X2, X3, the extra sums of squares
given in the output are:

SSR(X1), SSR(X2|X1) SSR(X3|X1, X2)

6. If an extra sum of squares involving several extra X variables is desired, it can be
obtained by summing appropriate single-degree-of-freedom extra sums of squares.
For instance, to obtain SSR(X2, X3|X1):

SSR(X2, X3|X1) = SSR(X2|X1) + SSR(X3|X1, X2) .

7. The reason why extra sums of squares are of interest is that they occur in a variety
of tests about regression coefficients where the question of concern is
whether certain X variables can be dropped from the regression model.
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7.2 Uses of Extra Sums of Squares in Tests for Re-
gression Coefficients

Test whether a Single βk = 0

1. Test whether the term βkXk can be dropped from a multiple regression model,

H0 : βk = 0 Ha : βk ̸= 0 ,

the test statistic: t∗ =
bk

s(bk)
is appropriate for this test.

2. Use the general linear test approach : consider the 昀椀rst-order regression model
with three predictor variables:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi Full model (7.12)

To test the alternatives:

H0 : β3 = 0 Ha : β3 ̸= 0. (7.13)

3. The error sum of squares SSE(F ) for the full model:

SSE(F ) = SSE(X1, X2, X3) , dfF = n− 4.

4. (Reduced Model) The reduced model when H0 in (7.13) holds:

Yi = β0 + β1Xi1 + β2Xi2 + εi Reduced model (7.14)

The error sum of squares SSE(E) for the reduced model:

SSE(R) = SSE(X1, X2) , dfR = n− 3.

5. The general linear test statistic:

F ∗ =
SSE(R)− SSE(F )

dfR − dfF
÷ SSE(F )

dfF

=
SSE(X1, X2)− SSE(X1, X2, X3)

(n− 3)− (n− 4)
÷ SSE(X1, X2, X3)

n− 4

=
SSR(X3|X1, X2)

1
÷ SSE(X1, X2, X3)

n− 4

=
MSR(X3|X1, X2)

MSE(X1, X2, X3)
(7.15)
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6. The test whether or not β3 = 0 is a marginal test , given that X1 and X2 are
already in the model.

7. Test statistic (7.15) shows that we do not need to 昀椀t both the full model and the re-
duced model to use the general linear test approach here. A single computer run
can provide a 昀椀t of the full model and the appropriate extra sum of squares.

8.
�

�

�

�
Example Body Fat Example

(a) To test for the model with all three predictor variables whether midarm cir-
cumference (X3) can be dropped from the model.

(b) (Table 7.4) ANOVA results of the full regression model (7.12), including the
extra sums of squares when the predictor variables are entered in the order
X1, X2, X3. Hence, test statistic (7.15) is:

F ∗ =
SSR(X3|X1, X2)

1
÷ SSE(X1, X2, X3)

n− 4

=
11.54

1
÷ 98.41

16
= 1.88

For α = 0.01, we require F (0.99; 1, 16) = 8.53 . Since F ∗ = 1.88 ≤ 8.53 ,
we conclude H0 , that X3 can be dropped from the regression model that
already contains X1 and X2.

(c) (Table 7.2d) the t∗ test statistic:

t∗ =
b3

s(b3)
=

−2.186

1.596
= −1.37

Since (t∗)2 = (−1.37)2 = 1.88 = F ∗ , we see that the two test statistics are
equivalent , just as for simple linear regression.
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9. The F ∗ test statistic (7.15) to test whether or not β3 = 0 is called a partial F test
statistic to distinguish it from the F ∗ statistic in (6.39b) for testing whether

all βk = 0, i.e., whether or not there is a regression relation between Y and the set
of X variables. The latter test is called the overall F test .

Test whether Several βk = 0

1. To know whether both β2X2 and β3X3 can be dropped from the full model (7.12).
The alternatives here are:

H0 : β2 = β3 = 0 Ha : not both β2 and β3 equal zero (7.16)

2. With the general linear test approach, the reduced model under H0 is:

Yi = β0 + β1Xi1 + εi Reduced model (7.17)

and the error sum of squares for the reduced model is:

SSE(R) = SSE(X1) dfR = n− 2

3. The general linear test statistic:

F ∗ =
SSE(X1)− SSE(X1, X2, X3)

(n− 2)− (n− 4)
÷ SSE(X1, X2, X3)

n− 4

=
SSR(X2, X3|X1)

2
÷ SSE(X1, X2, X3)

n− 4

=
MSR(X2, X3|X1)

MSE(X1, X2, X3)

4.
�

�

�

�
Example Body Fat Example

(a) To test in the body fat example for the model with all three predictor variables
whether both thigh circumference (X2) and midarm circumference (X3) can
be dropped from the full regression model (7.12):

SSR(X2, X3|X1) = SSR(X2|X1) + SSR(X3|X1, X2) = 33.17 + 11.54 = 44.71

(b) Test statistic (7.18) therefore:

F ∗ =
SSR(X2, X3|X1)

2
÷MSE(X1, X2, X3) =

44.71

2
÷ 6.15 = 3.63
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(c) For α = 0.05, we require F (0.95; 2, 16) = 3.63 . Since F ∗ = 3.63 is
at the boundary of the decision rule (the P -value of the test statis-
tic is 0.05 ), we may wish to make further analyses before deciding
whether X2 and X3 should be dropped from the regression model that already
contains X1.

7.3 Summary of Tests Concerning Regression Coeffi-
cients∗

7.4 Coefficients of Partial Determination
1. Extra sums of squares are not only useful for tests on the regression coefficients

of a multiple regression model, but they are also encountered in descriptive measures
of relationship called coefficients of partial determination .

2. Recall: the coefficient of multiple determination, R2, measures the proportionate
reduction in the variation of Y achieved by the introduction of the entire set

of X variables considered in the model.

3. A coefficient of partial determination measures the marginal contribution
of one X variable when all others are already included in the model.

Two Predictor Variables

1. Consider a 昀椀rst-order multiple regression model with two predictor variables:

Yi = β0 + β1Xi1 + β2Xi2 + εi.

(a) SSE(X2) : measures the variation in Y when X2 is included in the mode1.

(b) SSE(X1, X2) measures the variation in Y when both X1 and X2 are
included in the model.

2. (Recall) Coefficient of determination: R2 =
SSR

SST
= 1− SSE

SST
.
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3. The relative marginal reduction in the variation in Y associated with X1 when X2

is already in the model is:

R2
Y 1|2 =

SSE(X2)− SSE(X1, X2)

SSE(X2)
=

SSR(X1|X2)

SSE(X2)

This measure is the coefficient of partial determination between Y and X1,
given that X2 is in the mode1. Denoted by R2

Y 1|2
.

4. R2
Y 1|2 measures the proportionate reduction in the variation in Y remaining

after X2 is included in the model that is gained by also including X1 in the
model.

5. The coefficient of partial determination between Y and X2, given that X1 is in the
model, is de昀椀ned correspondingly:

R2
Y 2|1 =

SSR(X2|X1)

SSE(X1)

General Case

1. The generalization of coefficients of partial determination to three or more X vari-
ables in the model:

R2
Y 1|23 =

SSR(X1|X2, X3)

SSE(X2, X3)
(7.37)

R2
Y 2|13 =

SSR(X2|X1, X3)

SSE(X1, X3)
(7.38)

R2
Y 3|12

=
SSR(X3|X1, X2)

SSE(X1, X2)
(7.39)

R2
Y 4|123

=
SSR(X4|X1, X2, X3)

SSE(X1, X2, X3)
(7.40)

2.
�

�

�

�
Example Body Fat Example

(a) Example: we can obtain a variety of coefficients of partial determination. (Ta-
bles 7.2 and 7.4):

R2
Y 2|1 =

SSR(X2|X1)

SSE(X1)
=

33.17

143.12
= 0.232
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R2
Y 3|12 =

SSR(X3|X1, X2)

SSE(X1, X2)
=

11.54

109.95
= 0.105

R2
Y 1|2 =

SSR(X1|X2)

SSE(X2)
=

3.47

113.42
= 0.031

(b) When X2 is added to the regression model containing X1, the error sum
of squares SSE(X1) is reduced by 23.2 percent .

(c) SSE for the model containing both X1 and X2 is only reduced by another
10.5 percent when X3 is added to the model.

(d) If the regression model already contains X2, adding X1 reduces SSE(X2)

by only 3.1 percent .

Coefficients of Partial Correlation

1. The square root of a coefficient of partial determination is called a coefficient
of partial correlation .

2. One use of partial correlation coefficients is in computer routines for 昀椀nding the
best predictor variable to be selected next for inclusion in the regression model.

3. For the body fat example, we have:

rY 2|1 =
√
0.232 = 0.482

rY 3|12 = −
√
0.105 = −0.324

rY 1|2 =
√
0.031 = 0.176

4. The coefficients rY 2|1 and rY 1|2 are positive because we see from Table 7.2c that
b2 = 0.6594 and b1 = 0.2224 are positive . Similarly, rY 3|12 is negative because
we see from Table 7.2d that b3 = −2.186 is negative .

7.5 Standardized Multiple Regression Model∗

7.6 Multicollinearity and Its E昀昀ects
1. In multiple regression analysis, some questions frequently asked:
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(a) What is the relative importance of the e昀昀ects of the di昀昀erent predictor
variables?

(b) What is the magnitude of the e昀昀ect of a given predictor variable on the
response variable?

(c) Can any predictor variable be dropped from the model because it has
little or no e昀昀ect on the response variable?

(d) Should any predictor variables not yet included in the model be considered for
possible inclusion ?

2. In many nonexperimental situations in business, economics, and the social and
biological sciences, the predictors tend to be correlated among themselves
and with other variables that are related to the response variable but are not
included in the model.

3.
�

�

�

�
Example In a regression of family food expenditures on the explanatory variables

family income, family savings, and age of head of household, the explanatory vari-
ables will be correlated among themselves. Further, they will also be correlated
with other socioeconomic variables not included in the model that do a昀昀ect family
food expenditures, such as family size.

4. When the predictor variables are correlated among themselves, intercorrelation
or multicollinearity among them is said to exist.

Uncorrelated Predictor Variables

1. (Table 7.6) The data for a small-scale experiment on the e昀昀ect of work crew size
(X1) and level of bonus pay (X2) on crew productivity (Y ). The predictor variables
X1 and X2 are uncorrelated ( r212 = 0 ).
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2. (Table 7.7a (7.7b) (7.7c)) The 昀椀tted regression function and the analysis of variance
table when both X1 and X2 are (only (X1) (X2) is) included in the model.

3. (Table 7.7) The regression coefficient for X1, b1 = 5.375 , is the same
whether only X1 is included in the model or both predictor variables are included.
The same holds for b2 = 9.250 .

4. When the predictor variables are uncorrelated , the e昀昀ects ascribed to them
by a 昀椀rst-order regression model are the same no matter which other of these
predictor variables are included in the model.

5. The extra sum of squares SSR(X1|X2) equals the regression sum of squares SSR(X1)

when only X1, is in the regression model:

SSR(X1|X2) = SSE(X2)− SSE(X1, X2)

= 248.750− 17.625 = 231.125

SSR(X1) = 231.125
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6. Similarly, the extra sum of squares SSR(X2|X1) equals SSR(X2), the regression
sum of squares when only X2 is in the regression model:

SSR(X2|X1) = SSE(X1)− SSE(X11, X2)

= 188.750− 17.625 = 171.125

SSR(X2) = 171.125

7. In general, when two or more predictor variables are uncorrelated, the marginal
contribution of one predictor variable in reducing the error sum of squares

when the other predictor variables are in the model is exactly the same as
when this predictor variable is in the model alone.

8. See Comment on page 281 for the proof: when X1 and X2 are uncorrelated,
adding X2 to the regression model does not change the regression coefficient for X1;
correspondingly, adding X1 to the regression model does not change the regression
coefficient for X2.

Nature of Problem when Predictor Variables Are Perfectly Cor-
related

1. (Table 7.8)
�

�

�

�
Example The data refer to four sample observations on a response

variable and two predictor variables. The 昀椀rst-order multiple regression function
昀椀t:

E(Y ) = β0 + β1X1 + β2X2.

Mr. A : Ŷ = −87 +X1 + 18X2 (perfect 昀椀t) (7.58)

Mr. B : Ŷ = −7 + 9X1 + 2X2 (perfect 昀椀t) (7.59)
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2. It can be shown that in昀椀nitely many response functions will 昀椀t the data in
Table 7.8 perfectly. The reason is that the predictor variables X1, and X2 are
perfectly related:

X2 = 5 + 0.5X1 (7.60)

3. (Figure 7.2) The 昀椀tted response functions (7.58) and (7.59) are entirely di昀昀erent
response surfaces. The two response surfaces have the same 昀椀tted values only
when they intersect .

4.5. Two key implications of this example are:

(a) The perfect relation between X1, and X2 did not inhibit our ability to obtain
a good 昀椀t to the data.

(b) Since many di昀昀erent response functions provide the same good 昀椀t, we cannot
interpret anyone set of regression coefficients as re昀氀ecting the e昀昀ects

of the di昀昀erent predictor variables.

E昀昀ects of Multicollinearity

1. The fact that some or all predictor variables are correlated among themselves (a)
does not, in general, inhibit our ability to obtain a good 昀椀t (b) nor does it tend
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to a昀昀ect inferences about mean responses or predictions of new observations ,
provided these inferences are made within the region of observations.

2. The estimated regression coefficients tend to have large sampling variability
when the predictor variables are highly correlated. Thus, the estimated regression
coefficients tend to vary widely from one sample to the next when the predictor
variables are highly correlated.

3. Many of the estimated regression coefficients individually may be statistically not
signi昀椀cant even though a de昀椀nite statistical relation exists between the re-

sponse variable and the set of predictor variables.

4. The common interpretation of a regression coefficient as measuring the change
in the expected value of the response variable when the given predictor variable
is increased by one unit while all other predictor variables are held constant is

not fully applicable when multicollinearity exists.

5.
�

�

�

�
Example The Body Fat Example

(a) (Table 7.1): A sample of 20 healthy females 25 − 34 years old, Y : amount of
body fat, X1: triceps skinfold thickness, X2: thigh circumference, X3: midarm
circumference. (Table 7.2): The regression results for di昀昀erent 昀椀tted models.

(b) (Figure 7.3) The scatter plot matrix and the correlation matrix of the pre-
dictor variables: predictor variables X1 and X2 are highly correlated (r12 = 0.924) .

(c) r13 = 0.458 and r23 = 0.085.

(d) The coefficient of multiple determination when X3 is regressed on X1 and
X2 is 0.998: X3 is highly correlated with X1 and X2 together.
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6. E昀昀ects on Regression Coefficients.

(a) The regression coefficient for X1, triceps skinfold thickness, varies markedly
depending on which other variables are included in the model.

(b) The story is the same for the regression coefficient for X2. The regression
coefficient b2 even changes sign when X3 is added to the model that
includes X1 and X2.

(c) Important conclusion: When predictor variables are correlated, the regression
coefficient of anyone variable depends on which other predictor variables
are included in the model and which ones are left out. Thus, a regression coef-
昀椀cient does not re昀氀ect any inherent e昀昀ect of the particular predictor variable
on the response variable but only a marginal or partial e昀昀ect, given
whatever other correlated predictor variables are included in the model.

7. E昀昀ects on Extra Sums of Squares.

(a) When predictor variables are correlated, the marginal contribution of anyone
predictor variable in reducing the error sum of squares varies , depend-
ing on which other variables are already in the regression model, just as for
regression coefficients.

(b) (Table 7.2) Consider the following extra sums of squares for X1:

SSR(X1) = 352.27 SSR(X1|X2) = 3.47.

The reason why SSR(X1|X2) is so small compared with SSR(X1) is that
X1 and X2 are highly correlated with each other and with the response
variable.

(c) When X2 is already in the regression model, the marginal contribution of X1

in reducing the error sum of squares is comparatively small because X2

contains much of the same information as X1.
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(d) The same story is found in Table 7.2 for X2. Here SSR(X2|X1) = 33.17 ,
which is much smaller than SSR(X2) = 381.97 .

(e) Important conclusion: When predictor variables are correlated, there is no
unique sum of squares that can be ascribed to anyone predictor variable

as re昀氀ecting its e昀昀ect in reducing the total variation in Y . The reduction in the
total variation ascribed to a predictor variable must be viewed in the context
of the other correlated predictor variables already included in the model.

8. E昀昀ects on s(bk).

(a) (Table 7.2 for the body fat example) how much more imprecise the esti-
mated regression coefficients b1 and b2 become as more predictor variables are
added to the regression model:

(b) The high degree of multicollinearity among the predictor variables is re-
sponsible for the in昀氀ated variability of the estimated regression coeffi-
cients.

9. E昀昀ects on Fitted Values and Predictions.

(a) (Table 7.2 for the body fat example) the high multicollinearity among the pre-
dictor variables does not prevent the mean square error , measuring the
variability of the error terms, from being steadily reduced as additional
variables are added to the regression model:
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(b) The precision of 昀椀tted values within the range of the observations on the
predictor variables is not eroded with the addition of correlated predictor
variables into the regression model.

(c)
�

�

�

�
Example Consider the estimation of mean body fat when the only predictor

variable in the model is triceps skinfold thickness (X1) for Xh1 = 25.0. The
昀椀tted value and its estimated standard deviation are (calculations not shown):

Ŷh = 19.93, s(Ŷh) = 0.632

When the highly correlated predictor variable thigh circumference (X2) is also
included in the model, the estimated mean body fat and its estimated standard
deviation are as follows for Xh1 = 25.0 and Xh2 = 50.0:

Ŷh = 19.36 s(Ŷh) = 0.624

Thus, the precision of the estimated mean response is equally good as
before, despite the addition of the second predictor variable that is highly
correlated with the 昀椀rst one.

(d) The essential reason for the stability is that the covariance between b1

and b2 is negative, which plays a strong counteracting in昀氀uence to
the increase in s2(b1), in determining the value of s2(Ŷh) as given in (6.79).

10. E昀昀ects on Simultaneous Tests of βk. Paradox of t-test and F -test:

(a) (The Body Fat Example) test whether β1 = 0 and β2 = 0 . Control-
ling the family level of signi昀椀cance at 0.05, we require with the Bonferroni method
that each of the two t tests be conducted with level of signi昀椀cance 0.025 .

(b) Hence, we need t(.975;17) = 2.46 . Since both t∗ statistics in Table 7.2c
have absolute values that do not exceed 2.46, we would conclude from the two

separate tests that β1 = 0 and that β2 = 0.

(c) (Table 7.2c) Yet the proper F test for H0 : β1 = β2 = 0 would lead to
the conclusion Ha that not both coefficients equal zero. We 昀椀nd F ∗ =

MSR/MSE = 192.72/6.47 = 29.8, which far exceeds F(0.95;2,17) = 3.59.
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(d) The reason for this apparently paradoxical result is that each t∗ test is
a marginal test , as we have seen in (7.15) from the perspective of the
general linear test approach.

(e) Thus, a small SSR(X1|X2) here indicates that X1, does not provide much
additional information beyond X2, which already is in the model; hence, we
are led to the conclusion that β1 = 0.

(f) Similarly, we are led to conclude β2 = 0 here because SSR(X2|X1) is
small, indicating that X2 does not provide much more additional information
when X1 is already in the model.

(g) But the two tests of the marginal e昀昀ects of X1 and X2 together are not
equivalent to testing whether there is a regression relation between Y and the
two predictor variables.

(h) The reason is that the reduced model for each of the separate tests contains the
other predictor variable , whereas the reduced model for testing whether
both β1 = 0 and β2 = 0 would contain neither predictor variable.

The proper F test shows that there is a de昀椀nite regression relation here between
Y and X1 and X2.

Need for More Powerful Diagnostics for Multicollinearity

1. The diagnostic tool for identifying multicollinearity: the pairwise coefficients of
simple correlation between the predictor variables is frequently helpful.

2. (Chapter 10) more powerful tool for identifying the existence of serious multi-
collinearity.

3. (Chapter 11) Some remedial measures for lessening the e昀昀ects of multicollinearity.

� TA Class'

&

$

%

• Problems: 7.2, 7.3, 7.6, 7.11, 7.24.

• Exercises: 7.31
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Overview
1. We consider in greater detail standard modeling techniques for quantitative

predictors, for qualitative predictors, and for regression models containing
both quantitative and qualitative predictors.

2. These techniques include the use of interaction and polynomial terms
for quantitative predictors, and the use of indicator variables for qualitative
predictors.

8.1 Polynomial Regression Models
1. The polynomial regression models for quantitative predictor variables are among

the most frequently used curvilinear response models in practice because they
are handled easily as a special case of the general linear regression model (6.7).

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi

2. We discuss several commonly used polynomial regression models.

3. Then we present a case to illustrate some of the major issues encountered with
polynomial regression models.

(111-2) Regression Analysis (I) January 24, 2023

http://www.hmwu.idv.tw


Chapter 8: Regression Models for Quantitative and Qualitative Predictors Page 2/24

Uses of Polynomial Models

1. Polynomial regression models have two basic types of uses:

(a) When the true curvilinear response function is indeed a polynomial func-
tion.

(b) When the true curvilinear response function is unknown (or complex)
but a polynomial function is a good approximation to the true function.

One Predictor Variable - Second Order

1. Polynomial regression models may contain one, two, or more than two predictor
variables . Further, each predictor variable may be present in various powers .

2. Considering a polynomial regression model (called a second-order model with
one predictor variable):

Yi = β0 + β1xi + β2x
2
i + εi (8.1)

or
Yi = β0 + β1xi + β11x

2
i + εi (8.2)

where: xi = Xi − X̄ .

3. Note that the predictor variable is centered -in other words, expressed as a
deviation around its mean X̄ - and that the ith centered observation is denoted by
xi.

4. The reason for using a centered predictor variable in the polynomial regression model
is that X and X2 often will be highly correlated . Centering the predictor
variable often reduces the multicollinearity substantially.

5. The response function for regression model (8.2) is (called a quadratic response function ):

E{Y } = β0 + β1x+ β11x
2 (8.3)
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6. The regression coefficient β0 represents the mean response of Y when x = 0, i.e.,
when X = X̄ . The regression coefficient β1 is called the linear e昀昀ect
coefficient, and β11 is called the quadratic e昀昀ect coefficient.

One Predictor Variable - Third Order

1. The regression model is called a third-order model with one predictor variable

Yi = β0 + β1xi + β11x
2
i + β111x

3
i + εi (8.5)

where xi = Xi − X̄

2. The response function for regression model (8.5) is:

E{Y } = β0 + β1x+ β11x
2 + β111x

3 (8.6)
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One Predictor Variable - Higher Orders

1. Polynomial models with the predictor variable present in higher powers than
the third should be employed with special caution. The interpretation

of the coefficients becomes difficult for such models.

Two Predictor Variables - Second Order

1. The regression model:

Yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β22x

2
i2 + β12xi1xi2 + εi (8.7)

where xi1 = Xi1 − X̄1, xi2 = Xi2 − X̄2.

2. The response function is:

E{Y } = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 (8.8)

3. Note that regression model (8.7) contains separate linear and quadratic
components for each of the two predictor variables and a cross-product term.

4. The latter represents the interaction e昀昀ect between X1 and X2. The coefficient β12

is often called the interaction e昀昀ect coefficient .
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Three Predictor Variables - Second Order∗

Implementation of Polynomial Regression Models∗

Case Example

1. Setting. A researcher studied the e昀昀ects of the charge rate and temperature on
the life of a new type of power cell in a preliminary small-scale expetiment. The
charge rate (X1) was controlled at three levels (0.6, 1.0, and 1.4 amperes ( 安培))
and the ambient temperature (X2) was controlled at three levels (l0, 20, 30◦C).
Factors pertaining to the discharge of the power cell were held at 昀椀xed levels. The
life of the power cell (Y ) was measured in terms of the number of discharge - charge
cycles that a power cell underwent before it failed.

2. Model to be Considered. (Table 8.1) The data obtained in the study are con-
tained in Table 8.1, columns 1-3. The researcher was not sure about the nature
of the response function in the range of the factors studied. Hence, the researcher
decided to 昀椀t the second-order polynomial regression model (8.7):

Yi = β0 + β1xi1 + β2xi2 + β11x
2
i1 + β22x

2
i2 + β12xi1xi2 + εi (8.13)

for which the response function is:

E{Y } = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 (8.14)
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3. Coded Variables. Because of the balanced nature of the X1 and X2 levels studied,
the researcher not only centered the variables X1 and X2 around their respective
means but also scaled them in convenient units, as follows:

xi1 =
Xi1 − X̄1

0.4
=

Xi1 − 1.0

0.4

xi2 =
Xi2 − X̄2

10
=

Xi1 − 20

10

(a) Here, the denominator used for each predictor variable is the absolute di昀昀erence
between adjacent levels of the variable.

(b) These centered and scaled variables are shown in columns 4 and 5 of Table
8.1. Note that the codings de昀椀ned in (8.15) lead to simple coded values, -1,
0, and 1. The squared and cross-product terms are shown in columns 6-8 of
Table 8.1.

(c) Use of the coded variables x1 and x2 rather than the original variables X1 and
X2 reduces the correlations between the 昀椀rst power and second power
terms markedly. Low levels of multicollinearity can be helpful in avoiding
computational inaccuracies.

(d) The researcher was particularly interested in whether interaction e昀昀ects
and curvature e昀昀ects are required in the model for the range of the X

variables considered.

4. Fitting of Model. (Figure 8.4) contains the basic regression results for the 昀椀t of
model (8.13) with the SAS regression package. The estimated regression function :

Ŷ = 162.84− 55.83x1 + 75.50x2 + 27.39x2
1 − 10.61x2

2 + 11.50x1x2 (8.16)
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5. Residual Plots. (Figure 8.5) None of these plots suggest any gross inadequacies of
regression model (8.13). The coefficient of correlation between the ordered residuals
and their expected values under normality is 0.974, which supports the assumption
of normality of the error terms.
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6. Test of Fit. Since there are three replications at x1 = 0, x2 = 0, another indication
of the adequacy of regression model (8.13) can be obtained by the formal test in
(6.68) of the goodness of 昀椀t of the regression function (8.14).

(a) The pure error sum of squares (3.16):

SSPE = (157− 157.33)2 + (131− 157.33)2 + (184− 157.33)2 = 1, 404.67

Since there are c = 9 distinct combinations of levels of the X variables here,
there are n− c = 11− 9 = 2 degrees of freedom associated with SSPE.

(b) (Figure 8.4) SSE = 5, 240.44. Hence the lack of 昀椀t sum of squares (3.24) is:

SSLF = SSE − SSPE = 5, 240.44− 1, 404.67 = 3, 835.77

with which c − p = 9 − 6 = 3 degrees of freedom are associated. (p = 6

regression coefficients in model (8.13) had to be estimated.)

(c) Hence, test statistic (6.68b) for testing the adequacy of the regression function
(8.14) is:

F ∗ =
SSLF

c− p
÷

SSPE

n− c
=

3, 835.77

3
÷

1, 404.67

2
= 1.82

(d) For α = 0.05, we require F(0.95;3,2) = 19.2 . Since F ∗ = 1.82 ≤ 19.2, we
conclude according to decision rule (6.68c) that the second-order polynomial
regression function (8.14) is a good 昀椀t.

(111-2) Regression Analysis (I) January 24, 2023



Chapter 8: Regression Models for Quantitative and Qualitative Predictors Page 9/24

7. Coefficient of Multiple Determination. (Figure 8.4) R2 = 0.9135 : the
variation in the lives of the power cells is reduced by about 91 percent when the
昀椀rst-order and second-order relations to the charge rate and ambient temperature
are utilized. The adjusted R2 = 0.8271 .

8. Partial F Test. Whether a 昀椀rst-order model would be sufficient? The test alter-
natives are:

H0 : β11 = β22 = β12 = 0 , Ha : not all βs in H0 equal zero

(a) The partial F test statistic (7.27) here is:

F ∗ =
SSR(x2

1, x
2
2, x1x2|x1, x2)

3
÷MSE

(b) (Figure 8.4) SSR(x1) = 18, 704, SSR(x2|x1) = 34, 202. The required extra
sum of squares is therefore obtained:

SSR(x2
1, x

2
2, x1x2|x1, x2) = SSR(x2

1|x1, x2) + SSR(x2
2|x1, x2, x

2
1)

+SSR(x1x2|x1, x2, x
2
1, x

2
2)

= 1, 646.0 + 284.9 + 529.0 = 2, 459.9 .

(c) (Figure 8.4) MSE = 1048.1 . Hence the test statistic is:

F ∗ =
2459.9

3
÷ 1048.1 = 0.78

(d) For level of signi昀椀cance α = 0.05, we require F(0.95;3.5) = 5.41 . Since
F ∗ = 0.78 ≤ 5.41, we conclude H0 , that no curvature and interaction
e昀昀ects are needed, so that a 昀椀rst-order model is adequate for the range
of the charge rates and temperatures considered.

9. First-Order Model. On the basis of this analysis, the researcher decided to con-
sider the 昀椀rst-order model:

Yi = β0 + β1xi1 + β2xi2 + εi (8.17)

(a) A 昀椀t of this model yielded the estimated response function:

Ŷ = 172.00− 55.83x1 + 75.50x2 (8.18) s(b1) = 12.67, s(b2) = 12.67.
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(b) A variety of residual plots for this 昀椀rst-order model were made and ana-
lyzed by the researcher (not shown here), which con昀椀rmed the appropriateness
of 昀椀rst-order model (8.l7).

10. Fitted First-Order Model in Terms of X. The 昀椀tted 昀椀rst-order regression
function (8.l8) can be transformed back to the original variables by utilizing
(8.15). We obtain:

Ŷ = 160.58− 139.58X1 + 7.55X2 (8.19)

(Figure 8.6) contains an S-Plus regression-scatter plot of the 昀椀tted response plane.
The researcher used this 昀椀tted response surface for investigating the e昀昀ects of
charge rate and temperature on the life of this new type of power cell.

11. Estimation of Regression Coefficients. The researcher wished to estimate the
linear e昀昀ects of the two predictor variables in the 昀椀rst-order model, with a 90

percent family con昀椀dence coefficient, by means of the Bonferroni method.

(a) Joint Inferences (page 228) The Bonferroni joint con昀椀dence intervals can
be used to estimate several regression coefficients simultaneously. If g param-
eters are to be estimated jointly (where g ≤ p), the con昀椀dence limits with
family con昀椀dence coefficient 1− α are:

bk ± B s{bk} , where B = t(1−α/2g;n−p) (6.52)

(b) Here, g = 2 statements are desired; hence, by (6.52a), we have:

B = t(1−0.10/2(2)),8 = t(0.975;8) = 2.306

(111-2) Regression Analysis (I) January 24, 2023



Chapter 8: Regression Models for Quantitative and Qualitative Predictors Page 11/24

(c) The estimated standard deviations of b1 and b2 in (8.18) apply to the model
in the coded variables. Since only 昀椀rst-order terms are involved in this 昀椀tted
model, we obtain the estimated standard deviations of b′1 and b

′

2 for the 昀椀tted
model (8.19) in the original variables:

s{b
′

1} =
1

0.4
s{b1} =

12.67

0.4
= 31.68

s{b
′

2} =
1

10
s{b2} =

12.67

10
= 1.267

(d) The Bonferroni con昀椀dence limits by (6.52) therefore are −139.58±2.306(31.68)

and 7.55± 2.306(1.267), yielding the con昀椀dence limits:

−212.6 ≤ β1 ≤ −66.5, and 4.6 ≤ β2 ≤ 10.5

(e) With con昀椀dence 90%, we conclude that the mean number of charge/discharge
cycles before failure decreases by 66 to 213 cycles with a unit increase in
the charge rate for given ambient temperature, and increases by 5 to 10 cycles
with a unit increase of ambient temperature for given charge rate.

(f) The researcher was satis昀椀ed with the precision of these estimates for this initial
small-scale study.

Some Further Comments on Polynomial Regression

8.2 Interaction Regression Models∗

8.3 Qualitative Predictors
1. Examples of qualitative predictor variables are gender (male, female), purchase

status (purchase, no purchase), and disability status (not disabled, partly disabled,
fully disabled).

2.
�

�

�

�
Example In a study of innovation in the insurance industry, an economist wished

to relate the speed with which a particular insurance innovation is adopted (Y ) to
the size of the insurance 昀椀rm (X1) and the type of 昀椀rm (X2).

(a) Y : the number of months elapsed between the time the 昀椀rst 昀椀rm adopted the
innovation and the time the given 昀椀rm adopted the innovation.
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(b) X1: size of 昀椀rm, is quantitative, and is measured by the amount of total assets
of the 昀椀rm.

(c) X2: type of 昀椀rm, is qualitative and is composed of two classes − stock compa-
nies and mutual companies.

In order that such a qualitative variable can be used in a regression model, quantitative
indicators for the classes of the qualitative variable must be employed.

Qualitative Predictor with Two Classes

1. We shall use indicator variables that take on the values 0 and 1 to quantify a
qualitative variable.

2.
�

�

�

�
Example For the insurance innovation example, where the qualitative predictor

variable has two classes, we might de昀椀ne two indicator variables X2 and X3:

X2 =

{

1 if stock company
0 otherwise

X3 =

{

1 if mutual company
0 otherwise

3. A 昀椀rst-order model:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi (8.31)

4. This intuitive approach of setting up an indicator variable for each class of the
qualitative predictor variable unfortunately leads to computational difficulties :

X′X matrix does not have an inverse, and no unique estimators of the
regression coefficient can be found (see details at page 314.)

5. Principle: A qualitative variable with c classes will be represented by c− 1

indicator variables, each taking on the values 0 and 1.

6. Indicator variables are frequently also called dummy variables or binary vari-
ables.
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Interpretation of Regression Coefficients

1.
�

�

�

�
Example Returning to the insurance innovation example, suppose that we drop

the indicator variable X3 from regression model (8.31) so that the model becomes:

Yi = β0 + β1Xi1 + β2Xi2 + εi (8.33)

where:

X1 = size of 昀椀rm

X2 =

{

1 if stock company
0 if mutual company

2. The response function for this regression model is:

E{Y } = β0 + β1X1 + β2X2 (8.34)

(a) (Figure 8.11) Consider 昀椀rst the case of a mutual 昀椀rm. For such a 昀椀rm, X2 = 0

and response function (8.34) becomes:

E{Y } = β0 + β1X1 + β2(0) = β0 + β1X1 Mutual 昀椀rms (8.34a)

Thus, the response function for mutual 昀椀rms is a straight line, with Y intercept
β0 and slope β1 .

(b) For a stock 昀椀rm, X2 = 1 and response function (8.34) becomes:

E{Y } = β0 + β1X1 + β2(1) = (β0 + β2) + β1X1 Stock 昀椀rms (8.34b)

This also is a straight line, with the same slope β1 but with Y intercept
β0 + β2 .
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3. The meaning of the regression coefficients in response function (8.34)

E{Y } = β0 + β1X1 + β2X2 (8.34)

(a) The mean time elapsed before the innovation is adopted, E{Y } , is a
linear function of size of 昀椀rm (X1), with the same slope β1 for both types
of 昀椀rms.

(b) β2 indicates how much higher (lower) the response function for stock
昀椀rms (coded 1) is than the one for mutual 昀椀rms (coded 0), for any given
size of 昀椀rm.

(c) β2 measures the di昀昀erential e昀昀ect of type of 昀椀rm.

4. Why we did not simply 昀椀t separate regressions for stock 昀椀rms and mutual 昀椀rms
in our example, and instead adopted the approach of 昀椀tting one regression
with an indicator variable . There are two reasons:

(a) Since the model assumes equal slopes and the same constant error term variance
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for each type of 昀椀rm, the common slope β1 can best be estimated by pool-
ing the two types of 昀椀rms.

(b) Also, other inferences, such as for β0 and β2, can be made more precisely
by working with one regression model containing an indicator variable since

more degrees of freedom will then be associated with MSE .

Example: the insurance innovation example

1. (Table 8.2) In the insurance innovation example, the economist studied 10 mutual
昀椀rms and 10 stock 昀椀rms Note that X2 = 1 for each stock 昀椀rm and X2 = 0 for each
mutual 昀椀rm.

2. (Table 8.3) The 昀椀tted response function is:

Ŷ = 33.87407− 0.10174X1 + 8.05547X2
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3. (Figure 8.12) contains the 昀椀tted response function for each type of 昀椀rm, together
with the actual observations.

4. The economist was most interested in the e昀昀ect of type of 昀椀rm (X2) on the elapsed
time for the innovation to be adopted and wished to obtain a 95 percent con昀椀dence
interval for β2.
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(a) We require t(0.975;17) = 2.110 and obtain from the results in Table 8.3 the
con昀椀dence limits 8.05547± 2.110(1.45911) .

(b) The con昀椀dence interval for β2 therefore is:

4.98 ≤ β2 ≤ 11.13

Thus, with 95 percent con昀椀dence, we conclude that stock companies tend to
adopt the innovation somewhere between 5 and 11 months later , on the
average, than mutual companies for any given size of 昀椀rm .

(c) A formal test of:
H0 : β2 = 0 Ha : β2 ̸= 0

with level of signi昀椀cance 0.05 would lead to Ha , that type of 昀椀rm has an ef-
fect, since the 95 percent con昀椀dence interval for β2 does not include zero .

Qualitative Predictor with More than Two Classes

1.
�

�

�

�
Example Consider the regression of tool wear (Y ) on tool speed (X1) and tool

model, where the latter is a qualitative variable with four classes (M1,M2,M3,M4):

X2 =

{

1 if tool model M1

0 otherwise

X3 =

{

1 if tool model M2

0 otherwise

X4 =

{

1 if tool model M3

0 otherwise

2. A 昀椀rst-order regression model:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + εi (8.36)

3. For this model, the data input for the X variables would be as follows:

Tool Model X1 X2 X3 X4

M1 Xi1 1 0 0
M2 Xi1 0 1 0
M3 Xi1 0 0 1
M4 Xi1 0 0 0
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4. The response function for regression model (8.36) is:

E{Y } = β0 + β1X1 + β2X2 + β3X3 + β4X4 (8.37)

(a) To understand the meaning of the regression coefficients, consider 昀椀rst what
response function (8.37) becomes for tool models M4 for, which X2 = 0,
X3 = 0, and X4 = 0:

E{Y } = β0 + β1X1 Tool models M4 (8.37a)

(b) For tool models M1, X2 = 1, X3 = 0, and X4 = 0, and response function
(8.37) becomes:

E{Y } = (β0 + β2) + β1X1 Tool models M1 (8.37b)

(c) Similarly, response functions (8.37) becomes for tool models M2 and M3:

E{Y } = (β0 + β3) + β1X1 Tool models M2 (8.37c)

E{Y } = (β0 + β4) + β1X1 Tool models M3 (8.37d)

(d) Response function (8.37) implies that the regression of tool wear on tool speed
is linear , with the same slope for all four tool models.

(e) The coefficients β2, β3, and β4 indicate, respectively, how much higher (lower)
the response functions for tool models M1, M2, and M3 are than the one for,
tool models M4, for any given level of tool speed .

(f) Thus, β2, β3, and β4 measure the di昀昀erential e昀昀ects of the qualitative variable
classes on the height of the response function for any given level of X1, always
compared with the class for which X2 = X3 = X4 = 0 .

(g) (Figure 8.13) we may wish to estimate di昀昀erential e昀昀ects other than
against tool models M4. β4 − β3 measures how much higher (lower) the
response function for tool models M3 is than the response function for
tool models M2 for any given level of tool speed, as may be seen by com-
paring (8.37c) and (8.37d). The point estimator of this quantity is, of course,

b4 − b3 , and the estimated variance of this estimator is:

s2{b4 − b3} = s2{b4}+ s2{b3} − 2s{b4, b3}. (8.38)

(111-2) Regression Analysis (I) January 24, 2023



Chapter 8: Regression Models for Quantitative and Qualitative Predictors Page 19/24

The needed variances and covariance can be readily obtained from the esti-
mated variance-covariance matrix of the regression coefficients.

8.4 Some Considerations in Using Indicator Variables∗

8.5 Modeling Interactions between Quantitative and
Qualitative Predictors

1.
�

�

�

�
Example: the insurance innovation example The economist actually did not begin

the analysis with regression model (8.33) because of the possibility of interaction e昀昀ects
between size of 昀椀rm and type of 昀椀rm on the response variable:

Yi = β0 + β1Xi1 + β2Xi2 + εi (8.33)
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2. Even though one of the predictor variables in the regression model here is qualitative,
interaction e昀昀ects can still be introduced into the model in the usual manner, by
including cross-product terms .

3. A 昀椀rst-order regression model with an added interaction term for the insurance
innovation example is:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi (8.49)

X1 = size of 昀椀rm

X2 =

{

1 if stock company
0 otherwise

4. The response function for this regression model is:

E{Y } = β0 + β1X1 + β2X2 + β3X1X2 (8.50)

Meaning of Regression Coefficients

1. (Figure 8.14) The meaning of the regression coefficients in response function (8.50)
can best be understood by examining the nature of this function for each type of 昀椀rm .

(a) For a mutual 昀椀rm, X2 = 0 and hence X1X2 = 0 . Response function
(8.50) therefore becomes for mutual 昀椀rms:

E{Y } = β0 + β1X1 + β2(0) + β3(0) Mutual 昀椀lms (8.50a)

(b) For stock 昀椀rms, X2 = 1 and hence X1X2 = 1 . Response function
(8.50) therefore becomes for stock 昀椀rms:

E{Y } = β0 + β1X1 + β2(1) + β3X1

or

E{Y } = (β0 + β2) + (β1 + β3)X1 Stock 昀椀lms (8.50b)
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(c) β2: indicates how much greater (smaller) is the Y intercept of the
response function for the class coded 1 (stock 昀椀rms) than that for the
class coded 0 (mutual 昀椀rms).

(d) β3: indicates how much greater (smaller) is the slope of the re-
sponse function for the class coded 1 than that for the class coded 0.

(e) (Figure 8.14) shows that the e昀昀ect of type of 昀椀rm with regression model (8.49)
depends on X1, the size of the 昀椀rm.

i. For smaller 昀椀rms, mutual 昀椀rms tend to innovate more quickly.

ii. For larger 昀椀rms stock 昀椀rms tend to innovate more quickly.

2. When interaction e昀昀ects are present, the e昀昀ect of the qualitative predictor variable
can be studied only by comparing the regression functions within the scope of
the model for the di昀昀erent classes of the qualitative variable.

3. (Figure 8.15) Another possible interaction pattern for the insurance innovation ex-
ample. Here, mutual 昀椀rms tend to introduce the innovation more quickly than stock
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昀椀rms for all sizes of 昀椀rms in the scope of the model. but the di昀昀erential e昀昀ect
is much smaller for large 昀椀rms than for small ones.

4. When one of the predictor variables is qualitative and the other quantitative, nonparallel
response functions that do not intersect within the scope of the model (as in

Figure 8.15) are sometimes said to represent an ordinal interaction . When the
response functions intersect within the scope of the model (as in Figure 8.14),
the interaction is then said to be a disordinal interaction .

Example

1.
�

�

�

�
Example: the insurance innovation example Since the economist was concerned

that interaction e昀昀ects between size and type of 昀椀rm may be present, the initial regression model
昀椀tted was model (8.49):

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi
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2. The values for the interaction term X1X2 for the insurance innovation example are
shown in Table 8.2, column 5, on page 317. Note that this column contains 0 for
mutual companies and Xi1 for stock companies.

3. (Table 8.4) the regression results of Y on X1, X2 , and X1X2. To test for the
presence of interaction e昀昀ects:

H0 : β3 = 0, Ha : β3 ̸= 0,

the economist used the t∗ statistic from Table 8.4a:

t∗ =
b3

s{b3}
=

−0.0004171

0.01833
= −0.02

4. For level of signi昀椀cance 0.05, we require t(0.975;16) = 2.120. Since |t∗| = 0.02 ≤ 2.120 ,
we conclude H0 , that β3 = 0.

5. The conclusion of no interaction e昀昀ects is supported by the two-sided p-value
for the test, which is very high, 0.98 .
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8.6 More Complex Models∗

8.7 Comparison of Two or More Regression Func-
tions∗

� TA Class'
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• Problems: 8.4, 8.5, 8.15, 8.21

• Exercises: 8.33, 8.34

• Projects: 8.39
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計算頁

“有時候壞事是注定要發生，而我們卻無能為力。那我們何必擔心呢?”
“Look, sometimes bad things happen —and there’s nothing you can do about it. So
why worry?”

— 獅子王 (The Lion King, 2019)
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Regression Analysis (I)
Kutner’s Applied Linear Statistical Models (5/E)

Chapter 9: Model Selection and Validation

Thursday 09:10-12:00, 商館 260205
Han-Ming Wu

Department of Statistics, National Chengchi University
http://www.hmwu.idv.tw

9.1 Overview of Model-Building Process
A strategy for the building of a regression model:

1. Data collection and preparation

2. Reduction of explanatory or predictor variables (for exploratory observational
studies)

3. Model re昀椀nement and selection

4. Model validation
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9.2 Surgical Unit Example
1. A hospital surgical unit was interested in predicting survival in patients undergoing

a particular type of liver operation. A random selection of 108 patients was available
for analysis. From each patient record, the following information was extracted from
the pre-operation evaluation:

X1 blood clotting score (血栓分數)
X2 prognostic index (預後指數)
X3 enzyme function test score (酶功能)
X4 liver function test score (肝功能)
X5 age, in years
X6 indicator variable for gender (0 = male, 1 =female)
X7, X8 indicator variables for history of alcohol use:

None: X7 = 0, X8 = 0, Moderate: X7 = 1, X8 = 0,Severe:X7 = 0, X8 = 1

2. These constitute the pool of potential explanatory or predictor variables for a
predictive regression model.

3. (Table 9.1) The response variable Y is survival time , which was ascertained
in a follow-up study. A portion of the data on the potential predictor variables
and the response variable is presented in Table 9.1. These data have already been

screened and properly edited for errors.

4. To illustrate the model-building procedures discussed in this and the next section,
we will use only the 昀椀rst four explanatory variables. We will also use only the 昀椀rst
54 of the 108 patients.
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5. Since the pool of predictor variables is small, a reasonably full exploration of
relationships and of possible strong interaction e昀昀ects is possible at this stage of
data preparation.

(a) Stem-and-leaf plots for each of the predictor variables (not shown). These high-
lighted several cases as outlying with respect to the explanatory variables.
The investigator was thereby alerted to examine later the in昀氀uence of
these cases.

(b) A scatter plot matrix and the correlation matrix (not shown)

6. A 昀椀rst-order regression model based on all predictor variables was 昀椀tted to serve as
a starting point.

(a) (Figure 9.2a) A plot of residuals against predicted values suggests that both
curvature and nonconstant error variance are apparent.

(b) (Figure 9.2b) the normal probability plot suggests some departure from
normality.
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7. Transformation: To make the distribution of the error terms more nearly normal
and to see if the same transformation would also reduce the apparent curvature, the
investigator examined the logarithmic transformation Y ′ = ln(Y ) .

(a) (Figure 9.2c) A plot of residuals against 昀椀tted values when Y ′ is regressed on
all four predictor variables in a 昀椀rst-order model;

(b) (Figure 9.2d) The normal probability plot of residuals for the transformed data
shows that the distribution of the error terms is more nearly normal .

8. (Figure 9.3) A scatter plot matrix and the correlation matrix with the transformed
Y variable.
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(a) Each of the predictor variables is linearly associated with Y ′, with X3

and X4 showing the highest degrees of association and X1 the lowest.

(b) Show inter-correlations among the potential predictor variables. In par-
ticular, X4 has moderately high pairwise correlations with X1, X2, and X3

9. Various scatter and residual plots were obtained (not shown here).

10. On the basis of these analyses, the investigator concluded to use, at this stage of
the model-building process, Y ′ = ln(Y ) as the response variable, to represent
the predictor variables in linear terms, and not to include any interaction terms.

11. The next stage is to examine whether all of the potential predictor variables
are needed or whether a subset of them is adequate.

9.3 Criteria for Model Selection
1. From any set of p− 1 predictors, 2p−1 alternative models can be con-

structed. This calculation is based on the fact that each predictor can be either
included or excluded from the model.

2. (Table 9.2) the 24 = 16 di昀昀erent possible subset models that can be formed
from the pool of four X variables in The Surgical Unit Example.
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3. Model selection procedures, also known as subset selection or variables selection
procedures, have been developed to identify a small group of regression models that
are ”good” according to a speci昀椀ed criterion.

4. While many criteria for comparing the regression models have been developed, we
will focus on six: R2

p, R2
a,p, Cp, AICp, SBCp and PRESSp .

5. We shall denote the number of potential X variables in the pool by P − 1 .
We assume throughout this chapter that all regression models contain an intercept
term β0 . Hence, the regression function containing all potential X variables
contains P parameters, and the function with no X variables contains one
parameter (β0).

6. The number of X variables in a subset will be denoted by p− 1 , as always,
so that there are p parameters in the regression function for this subset of X
variables. Thus, we have: 1 ≤ p ≤ P .

7. We will assume that the number of observations exceeds the maximum number of
potential parameters: n > p .

R2

p
or SSEp Criterion

1. R2
p criterion calls for the use of the coefficient of multiple determination R2 :

R2
p = 1−

SSEp

SSTO

2. R2
p indicates that there are p parameters, or (p− 1) X variables, in the regres-

sion function on which R2
p is based.

3. The R2
p criterion is equivalent to using the error sum of squares SSEp as the

criterion (we again show the number of parameters in the regression model as a
subscript).

4. The R2
p criterion is not intended to identify the subsets that maximize this criterion.

5. We know that R2
p can never decrease as additional X variables are included in

the model. Hence, R2
p will be a maximum when all (P − 1) potential X

variables are included in the regression model.
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6. The intent in using the R2
p criterion is to 昀椀nd the point where adding more X

variables is not worthwhile because it leads to a very small increase in R2
p

.

7.
�

�

�

�
Example The Surgical Unit Example

(a) (Table 9.2, column 3) the R2
p values were obtained from a series of computer

runs.

(b) For instance, when X4 is the only X variable in the regression model, we
obtain:

R2
2 = 1−

SSE(X4)

SSTO
= 1−

7.409

12.808
= 0.422

Note that SSTO = SSE1 = 12.808

(c) (Figure 9.4a) a plot of the R2
p values against p, the number of parameters in

the regression model.
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(d) The maximum R2
p value for the possible subsets each consisting of p − 1 pre-

dictor variables, denoted by max(Rp) , appears at the top of the graph
for each p. These points are connected by solid lines to show the impact of

adding additional X variables .

(e) (Figure 9.4a) little increase in max(Rp) takes place after three X variables are
included in the model.

(f) Hence, consideration of the subsets (X1, X2, X3) for which R2
4 = 0.757 (as

shown in column 3 of Table 9.2) and (X2, X3, X4) for which R2
4 = 0.718

appears to be reasonable according to the R2
p criterion.

(g) Note that variables X3 and X4, correlate most highly with the response
variable, yet this pair does not appear together in the max(R2

p) model for p = 4.

R2

a,p
or MSEp Criterion

1. Since R2
p does not take account of the number of parameters in the regression

model and since max(R2
p) can never decrease as p increases, the adjusted coefficient

of multiple determination R2
a,p in (6.42) has been suggested as an alternative crite-

rion:

R2
a,p = 1−

(

n− 1

n− p

)

SSEp

SSTO
= 1−

MSEp

SSTO/(n− 1)
(9.4)

2. It can be seeg from (9.4) that R2
a,p increases if and only if MSEp decreases

since SSTO/(n− 1) is 昀椀xed for the given Y observations. Hence, R2
a,p and MSEp

provide equivalent information.

3. The largest R2
a,p for a given number of parameters in the model, max(R2

a,p), can,
indeed, decrease as p increases .

4. Find a few subsets for which R2
a,p is at the maximum or so close to the

maximum that adding more variables is not worthwhile.

5.
�

�

�

�
Example The Surgical Unit Example

(a) (Table 9.2, column 4). For instance, we have for the regression model contain-
ing only X4:

R2
a,2 = 1−

(

n− 1

n− 2

)

SSE(X4)

SSTO
= 1−

(

53

52

)

7.409

12.808
= 0.410
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(b) (Figure 9.4b) The story told by the R2
a,p plot in Figure 9.4b is very similar

to that told by the R2
p plot in Figure 9.4a.

(c) Consideration of the subsets (X1, X2, X3) and (X2, X3, X4) appears
to be reasonable according to the R2

a,p criterion.

(d) Notice that R2
a,4 = 0.743 is maximized for subset (X1, X2, X3) , and

that adding X4 to this subset − thus using all four predictors − decreases
the criterion slightly: R2

a,5 = 0.740 .

Mallows’ Cp Criterion∗

AICp and SBCp Criteria

1. Two popular alternatives that also provide penalties for adding predictors are Akaike’s
(赤池) information criterion (AICp) and Schwarz’ Bayesian criterion (SBCp) .

2. We search for models that have small values of AICp, or SBCp:

AICp = n lnSSEp − n lnn+ 2p (9.14)

SBCp = n lnSSEp − n lnn+ (lnn)p (9.15)

3. Notice that for both of these measures, the 昀椀rst term is n lnSSEp which decreases
as p increases , The second term is 昀椀xed (for a given sample size n), and
the third term increases with the number of parameters, p .

4. Models with small SSEp will do well by these criteria as long as the penalties
− 2p for AICp and (lnn)p for SBCp − are not too large .

5. If n ≥ 8 the penalty for SBCp is larger than that for AICp.

6.
�

�

�

�
Example The Surgical Unit Example

(a) (Table 9.2, columns 6 and 7) When X4 is the only X variable in the regression
model:

AIC2 = n lnSSE2 − n lnn+ 2p

= 54 ln 7.409− 54 ln 54 + 2(2) = −103.262

SBC2 = n lnSSE2 − n lnn+ (lnn)p

= 54 ln 7.409− 54 ln 54 + (ln 54)(2) = −99.284
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(b) (Figures 9.4d, e) both of AICp and SBCp criteria are minimized for subset
(X1, X2, X3) .

PRESSp Criterion

1. The PRESSp (prediction sum of squares) criterion is a measure of how well
the use of the 昀椀tted values for a subset model can predict the observed

responses Yi . The error sum of squares, SSE =
∑

(Yi − Ŷi)
2 , is also such

a measure.

2. The PRESS measure di昀昀ers from SSE in that each 昀椀tted value Yi for the PRESS

criterion is obtained by deleting the ith case from the data set, estimating the
regression function for the subset model from the remaining n− 1 cases , and
then using the 昀椀tted regression function to obtain the predicted value Ŷi(i) for
the ith case.

3. We use the notation Ŷi(i) now for the 昀椀tted value to indicate, by the 昀椀rst
subscript i, that it is a predicted value for the ith case and, by the second
subscript (i), that the ith case was omitted when the regression function was
昀椀tted.

4. The PRESS prediction error for the ith case then is:

Yi − Ŷi(i) (9.16)

and the PRESSp criterion is the sum of the squared prediction errors over all n
cases:

PRESSp =
n

∑

i=1

(Yi − Ŷi(i))
2 (9.17)

5. Models with small PRESSp values are considered good candidate models.
The reason is that when the prediction errors Yi− Ŷi(i) are small, so are the squared
prediction errors and the sum of the squared prediction errors.

6.
�

�

�

�
Example The Surgical Unit Example

(a) (Table 9.2, column 8)(Figure 9.4f) The message given by the PRESSp values
in Table 9.2 and plot in Figure 9.4f is very similar to that told by the
other criteria.
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(b) We 昀椀nd that subsets (X1, X2, X3) and (X2, X3, X4) have small PRESS

values;

(c) The set of all X variables (X1, X2, X3, X4) involves a slightly larger PRESS

value than subset (X1, X2, X3).

(d) The subset (X2, X3, X4) involves a PRESS value of 4.597, which is moderately
larger than the PRESS value of 3.914 for subset (X1, X2, X3).

9.4 Automatic Search Procedures for Model Selec-
tion

1. The number of possible models, 2p−1 , grows rapidly with the number of pre-
dictors.

2. A variety of automatic computer-search procedures have been developed, e.g.,
”best” subsets regression and stepwise regression.

”Best” Subsets Algorithms

1. Time-saving algorithms require the calculation of only a small fraction of all
possible regression models.

2. For instance, the algorithms search for the 昀椀ve best subsets of X variables with
the smallest Cp values using much less computational e昀昀ort than when all possible
subsets are evaluated. These algorithms are called ”best” subsets algorithms .

3. When the pool of potential X variables is very large, say greater than 30 or 40, even
the ”best” subset algorithms may require excessive computer time .

4. As previously emphasized, our objective at this stage is not to identify a single best
model ; we hope to identify a small set of promising models for further

study.

5.
�

�

�

�
Example The Surgical Unit Example (eight predictors), we know there are 28 = 256

possible models.
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(a) (Figure 9.5) Plots of the six model selection criteria. The best values of each
criterion for each p have been connected with solid lines.

(b) (Table 9.3) The overall optimum criterion values have been underlined in
each column of the table.

(c) For example

i. a 7-or 8-parameter model is identi昀椀ed as best by the R2
a,p criterion (both

have max(R2
a,p) = 0.823 )

ii. a 6-parameter model is identi昀椀ed by the Cp criterion ( min(C7) = 5.541 ),

iii. a 7-parameter model is identi昀椀ed by the AICp criterion ( min(AIC7) = −163.834 ).
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iv. Both the SBCp and PRESSp criteria point to 5-parameter models
( min(SBC5) = −153.406 and min(PRESS5) = 2.738 ).

(d) (Figure 9.6) MINITAB output for the ”best” subsets algorithm. We speci昀椀ed
that the best two subsets be identi昀椀ed for each number of variables in
the regression model.

(e) The MINITAB algolithm uses the R2
p

criterion, but also shows for each
of the ”best” subsets the R2

a,p, Cp, and
√

MSEp (labeled S) values. The right-
most columns of the tabulation show the X variables in the subset.

(f) According to the R2
a,p criterion, the 7-parameter model based on all predictors

except Liver (X4) and Histmod (history of moderate alcohol use
X7), or the 8-parameter model based on all predictors except Liver (X4)
are best.

(g) The R2
a,p criterion value for both of these models is 0.823 .

6. The all-possible-regressions procedure leads to the identi昀椀cation of a small
number of subsets that are ”good” according to a speci昀椀ed criterion.

7. Consequently, one may wish at times to consider more than one criterion in
evaluating possible subsets of X variables.
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8. Once the investigator has identi昀椀ed a few ”good” subsets for intensive examina-
tion, a 昀椀nal choice of the model variables must be made. This choice is aided by

residual analyses (and other diagnostics to be covered in Chapter 10)
and by the investigator’s knowledge of the subject under study, and is 昀椀nally
con昀椀rmed through model validation studies.

Stepwise Regression Methods

1. When the pool of potential X variables contains 30 to 40 or even more variables,
use of a ”best” subsets algorithm may not be feasible .

2. An automatic search procedure that develops the ”best” subset of X vari-
ables sequentially may then be helpful. The forward stepwise regression
procedure is probably the most widely used of the automatic search methods.

3. Essentially, the forward stepwise search method develops a sequence of regression
models , at each step adding or deleting an X variable. The cri-

terion for adding or deleting an X variable can be stated equivalently in terms of
error sum of squares reduction , coefficient of partial correlation, t∗ statis-

tic, or F ∗ statistic.

4. An essential di昀昀erence between stepwise procedures and the ”best” subsets algo-
rithm is that stepwise search procedures end with the identi昀椀cation of a single
regression model as ”best.” With the ”best” subsets algorithm, several regres-
sion models can be identi昀椀ed as ”good” for 昀椀nal consideration.

Forward Stepwise Regression

We shall describe the forward stepwise regression search algorithm in terms of the t∗ statistics
(2.17) and their associated P -values for the usual tests of regression parameters.

1. The stepwise regression routine 昀椀rst 昀椀ts a simple linear regression model for
each of the p − 1 potential X variables. For each SLR model, the t∗ statistic for
testing whether or not the slope is zero is obtained:

t∗k =
bk

s{bk}
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(a) The X with the largest t∗ value is the candidate for 昀椀rst addition .
If this t∗ value exceeds a predetermined level , or if the corresponding
P -value is less than a predetermined α, the X variable is added .

(b) Otherwise, the program terminates with no X variable considered suffi-
ciently helpful to enter the regression model.

2. Assume X7 is the variable entered at step 1. The stepwise regression routine now
昀椀ts all regression models with two X variables , where X7 is one of the pair.

(a) For each such regression model, the t∗ test statistic corresponding to the
newly added predictor Xk is obtained.

(b) This is the statistic for testing whether or not βk = 0 when X7 and Xk

are the variables in the model.

(c) The X variable with the largest t∗ value-or equivalently, the smallest P -value is
the candidate for addition at the second stage.

(d) If this t∗ value exceeds a predetermined level (i.e., the P -value falls below a
predetermined level), the second X variable is added . Otherwise, the
program terminates.

3. Suppose X3 is added at the second stage. Now the stepwise regression routine
examines whether any of the other X variables already in the model should
be dropped .

(a) There is at this stage only one other X variable in the model, X7 , so that only
one t∗ test statistic is obtained:

t∗7 =
b7

s{b7}

(b) At later stages, there would be a number of these t∗ statistics, one for each of
the variables in the model besides the one last added .

(c) The variable for which this t∗ value is smallest (or equivalently the vari-
able for which the P -value is largest) is the candidate for deletion .

(d) If this t∗ value falls below-or the P -value exceeds-a predetermined limit, the
variable is dropped from the model; otherwise, it is retained .

(111-2) Regression Analysis (I) January 24, 2023



Chapter 9: Model Selection and Validation Page 17/21

4. Suppose X7 is retained so that both X3 and X7 are now in the model.

(a) The stepwise regression routine now examines which X variable is the next
candidate for addition .

(b) Then examines whether any of the variables already in the model should
now be dropped.

(c) And so on until no further X variables can either be added or deleted, at which
point the search terminates .

5. Note that the stepwise regression algorithm allows an X variable, brought into the
model at an earlier stage, to be dropped subsequently if it is no longer helpful
in conjunction with variables added at later stages.

Example

(Figure 9.7) MINITAB computer printout for the forward stepwise regression procedure
for The Surgical Unit Example. The maximum acceptable a limit for adding a
variable is 0.10 and the minimum acceptable a limit for removing a variable is 0.15.
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1. At the start of the stepwise search, no X variable is in the model so that the
model to be 昀椀tted is Yi = β0 + ϵi;.

(a) (Step 1), the t∗ statistics and corresponding P -values are calculated for
each potential X variable, and the predictor having the smallest P -value
( largest t∗ value ) is chosen to enter the equation.

(b) Enzyme (X3) had the largest test statistic:

t∗3 =
b3

s{b3}
=

0.015124

0.002427
= 6.23 .

(c) The P -value for this test statistic is 0.000 , which falls below the maximum
acceptable α-to-enter value of 0.10; hence Enzyme (X3) is added to the model.

(d) The current regression model contains Enzyme (X3), ”Step 1”: the regression
coefficient for Enzyme (0.0151).

(e) At the bottom of column 1, a number of variables-selection criteria, including
R2

1(42.76), R2
a,1(41.66), and C1(117.4) are also provided.

2. Next, all regression models containing X3 and another X variable are 昀椀tted,
and the t∗ statistics calculated:

t∗k =

√

MSR(Xk|X3)

MSE(X3, Xk)
, since F ∗ =

MSR

MSE
, F ∗ = (t∗)2

Progindex (X2) has the highest t∗ value, and its P -value (0.000) falls below 0.10, so
that X2 now enters the model.

3. Enzyme and Progindex (X3 and X2) are now in the model. At this point, a
test whether Enzyme (X3) should be dropped is undertaken, but because
the P -value (0.000) corresponding to X3 is not above 0.15, this variable is

retained .

4. Next, all regression models containing X2, X3, and one of the remaining potential
X variables are 昀椀tted. The appropriate t∗ statistics:

t∗k =

√

MSR(Xk|X2, X3)

MSE(X2, X3, Xk

The predictor labeled Histheavy (X8) had the largest t∗ value, (P -value = 0.000)
and was next added to the model. X2, X3 , and X8 are now in the model.
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5. Next, a test is undertaken to determine whether X2 or X3 should be dropped .
Since both of the corresponding P -values are less than 0.15, neither predictor is
dropped from the model.

6. (Step 4) Bloodclot (X1) is added, and no terms previously included were dropped.
The right-most column of Figure 9.7 summarizes the addition of variable X1 into
the model containing variables X2, X3, and X8.

7. Next, a test is undertaken to determine whether either X2 , X3 , or X8 should
be dropped. Since all P -values are less than 0.15 (all are 0.0(0), all variables are
retained.

8. Finally, the stepwise regression routine considers adding one of X4 , X5 , X6 , or X7

to the model containing X1, X2, X3, and X8. In each case, the P -values are greater
than 0.10 (not shown); therefore, no additional variables can be added to the model
and the search process is terminated.

9. Thus, the stepwise search algorithm identi昀椀es (X1, X2, X3, X8) as the ”best”
subset of X variables. This model also happens to be the model identi昀椀ed by both
the SBCp and PRESSp criteria in our previous analyses based on an
assessment of ”best” subset selection.

Other Stepwise Procedures

1. Forward Selection. The forward selection search procedure is a simpli昀椀ed version of
forward stepwise regression, omitting the test whether a variable once entered
into the model should be dropped .

2. Backward Elimination. The backward elimination search procedure is the opposite
of forward selection.

(a) It begins with the model containing all potential X variables and identi-
昀椀es the one with the largest P -value.

(b) If the maximum P -value is greater than a predetermined limit, that X variable
is dropped.
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(c) The model with the remaining (P − 2) X variables is then 昀椀tted, and the next
candidate for dropping is identi昀椀ed.

(d) This process continues until no further X variables can be dropped.

9.5 Some Final Comments on Automatic Model Se-
lection Procedures∗

9.6 Model Validation
1. The 昀椀nal step in the model-building process is the validation of the selected

regression models.

2. Model validation usually involves checking a candidate model against independent data .
Three basic ways of validating a regression model are:

(a) Collection of new data to check the model and its predictive ability.

(b) Comparison of results with theoretical expectations, earlier empirical re-
sults, and simulation results.

(c) Use of a holdout sample to check the model and its predictive ability .

3. What is di昀昀erence between: training set, testing set and hold-out set: (The training
set is for model-building )

(a) A observed data set (100%): e.g, training set (75%), testing set (25%).

(b) A observed data set (100%): k-fold cross validation: e.g, k = 4 (25%, 25%,
25%, 25%), in turns ”testing set (25%), training set (75%)” 4 times.

(c) A observed data set (100%): hold-out set (20%), Not hold-out set (80% for
4-fold CV)

Collection of New Data to Check Model

1. The best means of model validation is through the collection of new data .
The purpose of collecting new data is to be able to examine whether the regression
model developed from the earlier data is still applicable for the new data . If
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so, one has assurance about the applicability of the model to data beyond
tho,se on which the model is based.

Methods of Checking Validity. A means of measuring the actual predictive capability
of the selected regression model is to use this model to predict each case in the new
data set and then to calculate the mean of the squared prediction errors, to be
denoted by MSPR, which stands for mean squared prediction error:

MSPR =

∑n∗

i=1(Yi − Ŷi)
2

n∗

where:

• Yi is the value of the response variable in the ith validation case .

• Ŷi is the predicted value for the ith validation case based on the model-
building dataset.

• n∗ is the number of cases in the validation data set.

2. If the mean squared prediction error MSPR is fairly close to MSE based on
the regression 昀椀t to the model-building data set , then the error mean square
MSE for the selected regression model is not seriously biased and gives an
appropriate indication of the predictive ability of the model.

3. If the mean squared prediction error is much larger than MSE , one should
rely on the mean squared prediction error as an indicator of how well the selected
regression model will predict in the future.
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• Problems: 9.6, 9.11, 9.18, 9.21

• Exercises: none

• Projects: none
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14.1 Regression Models with.Binary Response Vari-
able∗

14.2 Sigmoidal Response Functions for Binary Re-
sponses∗

14.3 Simple Logistic Regression
1. If X is a random variable with Bernoulli distribution , then

P (X = 1) = π = 1− P (X = 0)

and the probability mass function of this distribution

fX(k, π) = πk(1− π)1−k, k ∈ {0, 1} .

2. The logit is the logarithm of the odds , where π = probability of a positive
outcome (e.g., survived Titanic sinking)

logit(π) = log
(

π

1− π

)
.
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3. A formal statement of the simple logistic regression model : recall that when
the response variable is binary , taking on the values 1 and 0 with proba-
bilities π and 1− π , respectively, Y is a Bernoulli random variable with
parameter E{Y } = π .

4. We could state the simple logistic regression model in the usual form:

Yi = E{Yi}+ εi

5. Since the distribution of the error term εi depends on the Bernoulli distribution
of the response Yi, it is preferable to state the simple logistic regression model as:
Yi are independent Bernoulli random variables with expected values:

E{Yi} = πi =
exp(β0 + β1Xi)

1 + exp(β0 + β1Xi)
. (14.20)

6. The X observations are assumed to be known constants . Alternatively, if the
X observations are random, E{Yi} is viewed as a conditional mean , given the
value of Xi.

Likelihood Function

1. Since each Yi observation is an ordinary Bernoulli random variable, where:

P (Yj = 1) = πi; P (Yj = 0) = 1− πi; i = 1, · · · , n.

we can represent its probability distribution as follows:

fi(Yi) = πYi

i (1− πi)
1−Yi , Yi = 0, 1; i = 1, · · · , n. (14.21)

Note that fi(1) = πi and fi(0) = 1− πi . Hence, fi(Yi) simply represents
the probability that Yi = 1 or 0.
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2. Since the Yi observations are independent, their joint probability function is:

g(Y1, · · · , Yn) =
n∏

i=1

fi(Yi) =
n∏

i=1

πYi

i (1− πi)
1−Yi . (14.22)

3. Find the maximum likelihood estimates by working with the logarithm of the joint
probability function:

ln g(Y1, · · · , Yn) = ln
n∏

i=1

fi(Yi)

=
n∑

i=1

[Yi ln πi + (1− Yi) ln(1− πi)]

=
n∑

i=1

[
Yi ln

(
πi

1− πi

)]
+

n∑

i=1

ln(1− πi) .

4. Since E{Yi} = πi; for a binary variable, it follows from (14.20) that:

1− πi = [1 + exp(β0 + β1Xi)]
−1 (14.24)

5. Furthermore, from (14.l8a), we obtain:

ln
(

πi

1− πi

)
= β0 + β1Xi (14.25)

6. Hence, log likelihood (14.23) can be expressed as follows:

lnL(β0, β1) =
n∑

i=1

Yi(β0 + β1Xi)−
n∑

i=1

ln[1 + exp(β0 + β1Xi)] (14.26)

where L(β0, β1) replaces g(Y1, · · · , Yn) to show explicitly that we now view this
function as the likelihood function of the parameters to be estimated, given the
sample observations.

Maximum Likelihood Estimation

1. The maximum likelihood estimates of β0 and β1 in the simple logistic regression
model are those values of β0 and β1 that maximize the log-likelihood function
in (14.26).

2. No closed-form solution exists for the values of β0 and β1, in (4.26) that max-
imize the log-likelihood function. Computer-intensive numerical search procedures
are therefore required to 昀椀nd the maximum likelihood estimates b0 and b1.
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3. Once the maximum likelihood estimates b0 and b1 are found, we substitute these
values into the response function in (14.20) to obtain the 昀椀tted response function.
We shall use πi to denote the 昀椀tted value for the ith case:

π̂i =
exp(b0 + b1Xi)

1 + exp(b0 + b1Xi)
.

4. The 昀椀tted logistic response function is as follows:

π̂ =
exp(b0 + b1X)

1 + exp(b0 + b1X)

5. If we utilize the logit transformation in (14.18), we can express the 昀椀tted response
function in (14.28) as follows:

π̂
′

= b0 + b1X , π̂
′

= ln
(

π̂

1− π̂

)
(14.29)

We call (14.29) the 昀椀tted logit response function .

6. Once the 昀椀tted logistic response function has been obtained, the usual next steps
are to examine the appropriateness of the 昀椀tted response function and, if the
昀椀t is good, to make a variety of inferences and predictions .

7. We shall postpone a discussion of how to examine the goodness of 昀椀t of a logistic
response function and how to make inferences and predictions until we have consid-
ered the multiple logistic regression model with a number of predictor variables.

Example

1. A systems analyst studied the e昀昀ect of computer programming experience on ability
to complete within a speci昀椀ed time a complex programming task, including debug-
ging. Twenty-昀椀ve persons were selected for the study. They had varying amounts
of programming experience (measured in months of experience), as shown in Table
14.1a column 1.
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2. All persons were given the same programming task, and the results of their success
in the task are shown in column 2. The results are coded in binary fashion: Y = 1

if the task was completed successfully in the allotted time, and Y = 0 if the task
was not complete d successfully.

3. (Figure 14.5) contains a scatter plot of the data. This plot is not too informative
because of the nature of the response variable, other than to indicate that ability
to complete the task successfully appears to increase with amount of experience.
A lowess nonparametric response curve was 昀椀tted to the data and is also shown in
Figure 14.5.
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4. A sigmoidal S-shaped response function is clearly suggested by the nonparametric
lowess 昀椀t. It was therefore decided to 昀椀t the logistic regression model

(14.20).

5. A standard logistic regression package was run on the data. The results are con-
tained in Table 14.1b. Since b0 = −3.0597 and b1 = 0.1615 , the estimated
logistic regression function:

π̂ =
exp(−3.0597 + 0.1615X)

1 + exp(−3.0597 + 0.1615X)
.

6. This 昀椀tted value is the estimated probability that a person with 14 months experi-
ence (X1 = 14) will successfully complete the programming task.

7. In addition to the lowess 昀椀t, Figure 14.5 also contains a plot of the 昀椀tted logistic
response function, π̂(x) .

Interpretation of b1

1. The interpretation of the estimated regression coefficient b1 in the 昀椀tted logistic
response function (14.30) is not the straightforward interpretation of the slope
in a linear regression model.

2. The reason is that the e昀昀ect of a unit increase in X varies for the logistic regression
model according to the location of the starting point on the X scale.
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3. An interpretation of b1 is found in the property of the 昀椀tted logistic function that the
estimated odds π̂/(1− π̂) are multiplied by exp(b1) for any unit increase
in X.

(a) Consider the value of the 昀椀tted logit response function (14.29) at X = Xj:

π̂
′

(Xj) = b0 + b1Xj .

The notation π̂
′

(Xj) indicates speci昀椀cally the X level associated with the 昀椀tted
value.

(b) We also consider the value of the 昀椀tted logit response function at X = Xj + 1 :
The di昀昀erence between the two 昀椀tted values is simply:

π̂
′

(Xj + 1)− π̂
′

(Xj) = b1 .

(c) Now according to (14.29a), π̂′

(Xj) is the logarithm of the estimated odds when
X = Xj; we shall denote it by loge(odds1). Similarly, π̂′

(Xj+1) is the logarithm
of the estimated odds when X = Xj + 1; we shall denote it by loge(odds2).

π̂
′

(Xj) = loge(odds1) = ln
(

ˆπ(Xj)

1− ˆπ(Xj)

)
= b0 + b1Xj .

(d) Hence, the di昀昀erence between the two 昀椀tted logit response values can be ex-
pressed as follows:

loge(odds2)− loge(odds1) = loge

odds2
odds1

= b1

(e) Taking antilogs of each side, we see that the estimated ratio of the odds,
called the odds ratio and denoted by ÔR, equals exp(b1) :

ÔR = odds2

odds1

= exp(b1) (14.31)

4.
�

�

�

�
Example The programming task example.

(a) We see from Figure 14.5 that the probability of success increases sharply
with experience.

(b) Speci昀椀cally, Table 14.1b shows that the odds ratio is

ÔR = exp(b1) = exp(0.1615) = 1.175,

so that the odds of completing the task increase by 17.5 percent with
each additional month of experience.
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(c) Since a unit increase of one month is quite small, the estimated odds ratio of
1.175 may not adequately show the change in odds for a longer di昀昀erence in
time. In general, the estimated odds ratio when there is a di昀昀erence of c units
of X is exp(cb1) .

(d) For example, should we wish to compare individuals with relatively little ex-
perience to those with extensive experience, say 10 months versus 25 months
so that c = 15, then the odds ratio would be estimated to be exp[15(0.1615)] =
11.3. This indicates that the odds of completing the task increase over 11-fold
for experienced persons compared to relatively inexperienced persons.

Supplementary

1. The 6 Assumptions of Logistic Regression

(a) The response variable is binary .

(b) The observations are independent .

(c) There is no multicollinearity among explanatory variables.

(d) There are no extreme outliers .

(e) There is a linear relationship between explanatory variables and the logit of the response
Variable.

(f) The sample size is sufficiently large .

2. Assumptions of Logistic Regression vs. Linear Regression: In contrast to linear
regression, logistic regression does not require:

(a) A linear relationship between the explanatory variable(s) and the response
variable.

(b) The residuals of the model to be normally distributed.

(c) The residuals to have constant variance , also known as homoscedasticity .
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— 緊急迫降 (Emergency Declaration, 2022)
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Note: (1) Fill in your name and student ID2(2) Answer the questions in English2(3) Answer the questions

in the order in which they appear2(4) Pencils are permitted for use2(5) Hand in the question, the answer

sheets and the sketch papers2(6) The calculation process is required.

1. (20%) Explain the following:

(a) What is the =Regression Analysis=?

(b) Let ³ be the level of the signiocance. What is the so-called =(1− ³)% Conodence Interval= for a

parameter » of the population.

(c) What is the =Coeûcient of Determination= for a regression model? How to interpret this number?

(d) What is the =ANOVA table= for simple linear regression? What is it used for?

2. (15%) For the given sample observations {(Xi, Yi), i = 1, · · · , n}, we assume a simple linear regression

model with distribution of error term unspecioed as Yi = ³0 + ³1Xi + ÷i. Find the least squares

estimators of the parameters ³0 and ³1.

3. (20%) For the given sample observations {(Xi, Yi), i = 1, · · · , n}, we assume a normal error regression

model as Yi = ³0+³1Xi+ ÷i, where ÷i are independent normally distributed with mean 0 and variance

Ã2. Find the MLEs of the parameters ³0 and ³1.

4. (10%) Given a random sample of data, {(Xi, Yi), i = 1, · · · , n}, and the level of the signiocance ³,

describe how to conduct the two-sided test concerning whether or not there is a linear association be-

tween X and Y for a normal error regression model. (State the null hypothesis, alternative hypothesis,

test statistics (in terms of data), and decision rule.)

5. Grade point average. The director of admissions of a small college selected 120 students at random

from the new freshman class in a study to determine whether a student9s grade point average (GPA)

at the end of the freshman year (Y ) can be predicted from the ACT test score (X). The results of the

study follow. Assume that a simple linear regression model is appropriate.

i: 1 2 3 · · · 118 119 120

Xi: 21 14 28 · · · 28 16 28

Yi: 3.897 3.885 3.778 · · · 3.914 1.860 2.948
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The regression analysis report conducted by R is given in Table 1.

(b) (10%) Obtain a 95 percent conodence interval for ³1. Interpret your conodence interval. Does it

include zero? Why might the director of admissions be interested in whether)he conodence

interval includes zero? (t0.025,120 = −1.97993, t0.05,120 = −1.657651, t0.025,119 = −1.9801,

t0.05,119 = −1.657759, t0.025,118 = −1.980272, t0.05,118 = −1.65787)

(c) (10%) Test, using the test statistic t∗, whether or not a linear association exists between student9s

ACT score (X) and GPA at the end of the freshman year (Y ). Use a level of signiocance of 0.O5.

State the alternatives, decision rule, and conclusion.

(d) (5%) What is the P -value of your test in part (b)? How does it support the conclusion reached

in part (b)?

(e) (5%) How do you interpret R-squared in this analysis?

(f) (5%) The ANOVA table is shown in Table 2. How to you interpret ANOVA results?
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Table 1: Regression analysis for Grade point average data

Call:

lm(formula = GPA ~ ACT, data = ex2.4.data)

Residuals:

Min 1Q Median 3Q Max

-2.74004 -0.33827 0.04062 0.44064 1.22737

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.11405 0.32089 6.588 1.3e-09 ***

ACT 0.03883 0.01277 3.040 0.00292 **

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 8 9 1

Residual standard error: 0.6231 on 118 degrees of freedom

Multiple R-squared: 0.07262,Adjusted R-squared: 0.06476

F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917

Table 2: Analysis of Variance Table for Grade point average data

Analysis of Variance Table

Response: GPA

Df Sum Sq Mean Sq F value Pr(>F)

ACT 1 3.588 3.5878 9.2402 0.002917 **

Residuals 118 45.818 0.3883

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 8 9 1
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Note: (1) Fill in your name and student ID2(2) Answer the questions in English2(3) Answer the questions

in the order in which they appear2(4) Pencils are permitted for use2(5) Hand in the question, the answer

sheets and the sketch papers2(6) The calculation process is required. (7) Use ³
˜

or X
˜

to represent a vector

β or a matrix X.

1. One would like to ot the simple linear regression (SLR) model to a given dataset {(Yi, Xi), i = 1, · · · , n}.

(a) (10%) Write down the normal error regression model for SLR in terms of (Yi, Xi).

(b) (10%) Express variables and regression coeûcient by column vectors or a matrix orst. And then

Express the model in matrix terms (boldface symbols).

(c) (20%) Derive the normal equations (in matrix notation) by the method of least squares:

Q =
∑

[Yi − (³0 + ³1Xi)]
2
.

(d) (10%) Obtain the estimated regression coeûcients (denoted by b) from normal equations by

matrix methods.

2. (20%) Use matrix methods to obtain the estimated regression coeûcients for the following data:

i 1 2 3 4 5 6 7 8 9 10

Xi 1 0 2 0 3 1 0 1 2 0

Yi 16 9 17 12 22 13 8 15 19 11

NOTE: If A =

[

a b

c d

]

then A
−1 =

[

d/D −b/D

−c/D a/D

]

, where D = ad− bc.

3. ANOVA results from SLR.

(a) (15%) There are three sums of squares in ANOVA results, write down their formulas (deonitions)

and derive their corresponding matrix representation. (Not just express them in matrix terms

directly.)

(b) (15%) Show that these three sums of squares are all quadratic forms.
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Note: (1) Fill in your name and student ID2(2) Answer the questions in English2(3) Answer the questions

in the order in which they appear2(4) Pencils are permitted for use2(5) Hand in the question, the answer

sheets and the sketch papers2(6) The calculation process is required. (7) Use ³
˜

or X
˜

to represent a vector

β or a matrix X.

1. (10%) Consider the multiple linear regression model for a given data {Yi, Xi1, Xi2, · · · , Xip}ni=1
, some-

one would like to perform a F -test for Lack of Fit for this model. Please state (a) the general (multiple)

linear regression model for this data; (b) the mean response function; (c) the test hypothesis (H0,Ha);

(d) the test statistic; and (e) the decision rule.

2. (5%) What is the extra sums of squares and what does it measure?

3. (10%) When the regression model contains three X variables, a variety of decompositions of

SSR(X1, X2, X3) into extra sums of squares can be obtained. Please give three examples.

4. (10%) Consider the orst-order regression model with three predictor variables, someone would like to

use extra sums of squares in testing whether both ³2X2 and ³3X3 can be dropped from the full model.

Please state (a) the test hypothesis (H0,Ha); (b) the full model and the reduced model; (c) the general

linear test statistics; and (d) the decision rule.

5. (5%) What is the deonition of the coeûcient of partial determination (take R2

Y 1|2 as an example and

express it in terms of the extra sum of squares) and what does it measure?

6. (20%) Consider the multiple regression analysis, what is the multicollinearity problem? What are the

efects of multicollinearity when conduct the multiple regression analysis? (Hint: you cannot just say

that the multicollinearity has efects on the regression coeûcients, for example, you need to describe

what does it result in on the regression coeûcients.)
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7. Commercial properties. A commercial real estate company evaluates vacancy rates, square footage,

rental rates, and operating expenses for commercial properties in a large metropolitan area in order

to provide clients with quantitative information upon which to make rental decisions. The data below

are taken from 81 suburban commercial properties that are the newest, best located, most attractive,

and expensive for ove specioc geographic areas. Shown here are the age (X1), operating expenses and

taxes (X2), vacancy rates (X3), total square footage (X4), and rental rates (Y ).

(a) (10%) Obtain the analysis of variance table that decomposes the regression sum of squares into

extra sums of squares associated with X4; with X1 given X4; with X2 , given X1, and X4; and

with X3, given X1, X2 and X4. (Hint: SSR(X4), SSR(X1|X4), · · · )
(b) (10%) Test whether X3 can be dropped from the regression model given that X1, X2 and X4 are

retained. Use the F ∗ test statistic and level of signiocance 0.01. State the alternatives, decision

rule, and conclusion. (Hint: F (0.99; 1, 76) = 6.980578;F (0.99; 2, 76) = 4.89584;F (0.99; 3, 76) =

4.050282;F (0.99; 1, 75) = 6.985359;F (0.99; 2, 75) = 4.899877;F (0.99; 3, 75) = 4.054022)

(c) (10%) Test whether both X2 and X3 can be dropped from the regression model given that X1

and X4 are retained; use ³ = 0.01. State the alternatives, and decision rule. (Hint: specify df1

and df2 in F (0.99; df1, df2) as a critical value.)

(d) (10%) Using the given R report sheet below, calculate the coeûcient of partial determination

R2

Y 2|14 and interpret. (Hint: Answer =There was not suûcient information provided.= if the

information provided was not suûcient to calculate R2

Y 2|14.)
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> summary(m4)

lm(formula = Y ~ X4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.378e+01 2.903e-01 47.482 < 2e-16 ***

X4 8.437e-06 1.498e-06 5.632 2.63e-07 ***

---

Residual standard error: 1.462 on 79 degrees of freedom

Multiple R-squared: 0.2865, Adjusted R-squared: 0.2775

F-statistic: 31.72 on 1 and 79 DF, p-value: 2.628e-07

> summary(m14)

lm(formula = Y ~ X1 + X4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.436e+01 2.771e-01 51.831 < 2e-16 ***

X1 -1.145e-01 2.242e-02 -5.105 2.27e-06 ***

X4 1.045e-05 1.363e-06 7.663 4.23e-11 ***

---

Residual standard error: 1.274 on 78 degrees of freedom

Multiple R-squared: 0.4652, Adjusted R-squared: 0.4515

F-statistic: 33.93 on 2 and 78 DF, p-value: 2.506e-11

> summary(m124)

lm(formula = Y ~ X1 + X2 + X4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.237e+01 4.928e-01 25.100 < 2e-16 ***

X1 -1.442e-01 2.092e-02 -6.891 1.33e-09 ***

X2 2.672e-01 5.729e-02 4.663 1.29e-05 ***

X4 8.178e-06 1.305e-06 6.265 1.97e-08 ***

---

Residual standard error: 1.132 on 77 degrees of freedom

Multiple R-squared: 0.583, Adjusted R-squared: 0.5667

F-statistic: 35.88 on 3 and 77 DF, p-value: 1.295e-14

> summary(m1234)

lm(formula = Y ~ X1 + X2 + X3 + X4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.220e+01 5.780e-01 21.110 < 2e-16 ***

X1 -1.420e-01 2.134e-02 -6.655 3.89e-09 ***

X2 2.820e-01 6.317e-02 4.464 2.75e-05 ***

X3 6.193e-01 1.087e+00 0.570 0.57

X4 7.924e-06 1.385e-06 5.722 1.98e-07 ***

---

Residual standard error: 1.137 on 76 degrees of freedom

Multiple R-squared: 0.5847, Adjusted R-squared: 0.5629

F-statistic: 26.76 on 4 and 76 DF, p-value: 7.272e-14



> anova(m4)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X4 1 67.775 67.775 31.723 2.628e-07 ***

Residuals 79 168.782 2.136

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 8 9 1

> anova(m124)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 14.819 14.819 11.566 0.001067 **

X2 1 72.802 72.802 56.825 7.841e-11 ***

X4 1 50.287 50.287 39.251 1.973e-08 ***

Residuals 77 98.650 1.281

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 8 9 1

> anova(m14)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 14.819 14.819 9.1365 0.003389 **

X4 1 95.231 95.231 58.7160 4.225e-11 ***

Residuals 78 126.508 1.622

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 8 9 1

> anova(m1234)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 14.819 14.819 11.4649 0.001125 **

X2 1 72.802 72.802 56.3262 9.699e-11 ***

X3 1 8.381 8.381 6.4846 0.012904 *

X4 1 42.325 42.325 32.7464 1.976e-07 ***

Residuals 76 98.231 1.293

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 8 9 1
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Note: (1) Fill in your name and student ID on the answer sheet2(2) Answer the questions in English2
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in the question, the answer sheets and the sketch papers2(6) The calculation process is required.

1. (10%) For the given sample observations {(Xi, Yi), i = 1, · · · , n}, we assume a normal error regression

model as Yi = ³0+³1Xi+ ÷i, where ÷i are independent normally distributed with mean 0 and variance

Ã2. Find the MLEs of the parameters ³0 and ³1.

2. Let {(Xi, Yi), i = 1, · · · , n} be the observed data and we would like to perform a simple linear regression

analysis. Please answer the following questions.

(a) (8%) Which plots can be used to conduct the diagnostics for predictor variable?

(b) (12%) The residuals can be used to examine six important types of departures from the simple

linear regression model with normal errors. What are those six important types of departures?

(c) (10%) Describe the Brown-Forsythe Test with a level of signiocant ³ (including at least the

assumption for the data, the null hypothesis, the test statistics and the decision rule.)

3. (25%) In the textbook, we have already learned some transformations for X and/or Y to ensure that

the assumptions for a simple linear regression normal error model are adequate. The transformations

are

log10(X), 1/X,
√
X,X2, exp (X), exp (Y ), log10(Y ), 1/Y,

√
Y , Y λ.

Four real world cases given below are analyzed each by a simple linear regression normal error model.

(a) A research would like to study the regression relationship between alpha counts per second (Y )

and plutonium activity (X) to estimate the activity of plutonium in the material under study.

(b) A chemist studied the concentration of a solution (Y ) over time (X). Fifteen identical solutions

were prepared. The 15 solutions were randomly divided into ove sets of three, and the ove sets

were measured, respectively, after 1, 3, 5, 7, and 9 hours.

(c) A marketing researcher studied annual sales of a product that had been introduced 10 years ago.

The data is collected, where X is the year (coded) and Y is sales in thousands of units.

(d) In a manufacturing study, the production times for 111 recent production runs were obtained.

The data consists of records for each run the production time in hours (Y ) and the production

lot size (X).
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Based on the scatterplots of Y versus X with a regression line, please indicates whether the transfor-

mations are needed for Y and/or X and conclude which transformations are possible for each case.

That is, oll in the blank spaces with the transformation methods in the following table in the answer

sheet. Mark the blank by =×= if the transformation is not necessary. You don9t have to specify the »

value when you think the Box-Cox transformation is appropriate.

Case Transformation of X Transformation of Y

(a)

(b)

(c)

(d)
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     Production Time versus Lot Size
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4. Suppose that we obtain a data set that can be expressed in the form:

{(Xj , Yij) : i = 1, · · · , nj ; j = 1, · · · , c}, where c > 2.

Someone would like to use F test for lack of ot to determine whether a simple linear regression model

adequately ots the data, where X is the predictor variables and Y is the response.

(a) (5%) What are the assumptions of the lack of ot test?

(b) (5%) What is the full model used for the lack of ot test?

(c) (5%) What is the reduced model used for the lack of ot test?

(d) (5%) What is the null hypothesis for the lack of ot test?

(e) (10%) The Growth rate data are available on the efect of dietary supplement on the growth rates

of rats. Here X = dose of dietary supplement and Y = growth rate. The following table presents

the data in a form suitable for the analysis (c = 6, n = 12). Construct a general ANOVA Table

(including Source of Variation, Sum of Square (SS), Degree of Freedom (df), Mean Square (MS)

and F statistics) for testing lack of ot of a simple linear regression function.

Data j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Replicate X1 = 10 X2 = 15 X3 = 20 X4 = 25 X5 = 30 X6 = 35

i = 1 73 85 90 87 75 65

Yij i = 2 78 88 91 86 63

i = 3 91

(f) (5%) State the test statistics, decision rule and conclusion. (for all j at 5% level of signiocance)

(Some numbers: error sum of squares for the reduced model (SSE(R)) = 891.73, regression sum of squares (SSR)

= 204.27, total sum of squares (SSTO) = 1096.00, F (0.95; 5, 5) = 5.050, F (0.95; 6, 4) = 6.163, F (0.95; 4, 6) =

4.534, F (0.95; 1, 10), F (0.95; 10, 1) = 241.881, F (0.95; 2, 10) = 4.103, F (0.95; 2, 9) = 4.256, F (0.95; 2, 8) = 4.459;

Ŷij = 92.003− 0.498Xj)
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Note: (1) Fill in your name and student ID on the answer sheet2(2) Answer the questions in English2
(3) Answer the questions in the order in which they appear2(4) Pencils are permitted for use2(5) Hand

in the question, the answer sheets and the sketch papers2(6) The calculation process is required. (7) The

total is 100 points.

1. (15%) For SLR, there are three sums of squares in ANOVA results, write down their formulas (def-

initions) and derive their corresponding matrix representation. (Do not just express them in matrix

terms directly.)

2. (5%) What is the four main steps for building a regression model?

3. (10%) Describe the =Forward Stepwise Regression= procedure to a hypothesized data set with variables

{Y,X1, X2, X3, X4} for selecting a good model.

see next page...
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4. (20%) Patient satisfaction. A hospital administrator wished to study the relation between patient

satisfaction (Y ) and patient9s age (X1, in years), severity (öÝg) of illness (X2, an index), and anxiety

(wo) level (X3, an index). The administrator randomly selected 46 patients and collected the data

presented below (not shown), where larger values of Y , X2, and X3 are, respectively, associated with

more satisfaction, increased severity of illness, and more anxiety.

(a) (5%) Obtain the analysis of variance table that decomposes the regression sum of squares into

extra sums of squares associated with X2; with X1 given X2; with X3 , given X2, and X1.

(b) (5%) Test whether X3 can be dropped from the regression model given that X1, and X2

are retained. Use the F ∗ test statistic and level of signiocance 0.025 State the alternatives,

decision rule, and conclusion. (Hint: (lower.tail) F (0.975, 1, 41) = 5.4136, F (0.975; 1, 42) =

5.4039, F (0.975, 2, 41) = 4.0416, F (0.975, 2, 42) = 4.0327)

(c) (5%) Test whether both X2 and X3 can be dropped from the regression model given that X1 are

retained; use ³ = 0.01. State the alternatives, and decision rule. (Hint: specify df1 and df2 in

F (0.99; df1, df2) as a critical value. Since the value of F (0.99; df1, df2) is not given, you don9t

have to draw a conclusion.)

(d) (5%) Using the given R report sheet below, calculate the coeûcient of partial determination R2

Y 1|23

and interpret. (Hint: Answer =There was not suûcient information provided.= if the information

provided was not suûcient to calculate R2

Y 1|23.)

> anova(m2)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X2 1 4860.3 4860.3 25.132 9.23e-06 ***

Residuals 44 8509.0 193.4

> anova(m12)

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 8275.4 8275.4 77.1389 3.802e-11 ***

X2 1 480.9 480.9 4.4828 0.04006 *

Residuals 43 4613.0 107.3

> anova(m123)

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 8275.4 8275.4 81.8026 2.059e-11 ***

X2 1 480.9 480.9 4.7539 0.03489 *

X3 1 364.2 364.2 3.5997 0.06468 .

Residuals 42 4248.8 101.2

. Page 2/5 .



_û�ÿ�{ 110 {~þ� 1 {� �o� �è}Ü}
�èùþÿ Regression Analysis (I) �Ĵÿwÿ Wöøï }Ü}ë: wo�
�èå�ÿ01 o 13 åÿßÿ9:10-10:40 >×~�þs<O=ÿvWs<×= 1. �ò~�ÿ}v�h}ōÙ½2

oèÜq 5�ÿswÿ}: 36 ÿ Calculator
Book

Notes
Dictionary

Cell phone

Laptop

2. úôßûý�ûÿ
èÜNßãß÷s
wÿÛo{ësý�
nÿō½�ÿÙ½ÿìoÏ���!! (§1∼§3) O × × ×

5. (20%) Assessed valuations Assessed valuations. A tax consultant studied the current relation

between selling price and assessed valuation of one-family residential dwellings in a large taX district

by obtaining data for a random sample of 16 recent =arm9s-length= sales transactions of one-family

dwellings located on comer lots and for a random sample of 48 recent sales of one-family dwellings not

located on corger lots. In the data that follow, both selling price (Y ) and assessed valuation (X1 are

expressed in thousand dollars, whereas lot location (X2) is coded 1 for comer lots and 0 for non-comer

lots. Assume that the error variances in the two populations are equal and that a orst-order regression

model with an added interaction term is appropriate.

(a) State the estimated regression function.

(b) Explain the meaning of all regression coeûcients in the model.

(c) Test whether the interaction term can be dropped from the model; use ³ = 0.05. State the

alternatives. decision rule, and conclusion. If the interaction term cannot be dropped from the

model, describe the nature of the interaction efect.

(d) What is the predicted selling price Ŷ when the assessed valuation X1 is 77.1 (thousand dollars)

for corner lots.

Call:

lm(formula = Y ~ X1 * X2, data = AssessedValuations)

Residuals:

Min 1Q Median 3Q Max

-10.8470 -2.1639 0.0913 1.9348 9.9836

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -126.9052 14.7225 -8.620 4.33e-12 ***

X1 2.7759 0.1963 14.142 < 2e-16 ***

X21 76.0215 30.1314 2.523 0.01430 *

X1:X21 -1.1075 0.4055 -2.731 0.00828 **

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 89 1

Residual standard error: 3.893 on 60 degrees of freedom

Multiple R-squared: 0.8233, Adjusted R-squared: 0.8145

F-statistic: 93.21 on 3 and 60 DF, p-value: < 2.2e-16
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6. (10%) Peruvian Blood Pressure Data This dataset consists of variables possibly relating to blood

pressures of n = 39 Peruvians (ùÿþ) who have moved from rural high altitude areas to urban

lower altitude areas. The variables in this dataset are: Y = Systolic blood pressure (Systol), X1 =

Age, X2 = Years in urban area, X3 = Weight (kg), X4 = Calf (_ÿ�) skinfold, and X5 = resting

Pulse rate. Using only orst-order terms for predictor variables, the various criteria values using R

for all possible regression models is given below. (a) What are the formulas of the following critera:

Ra,p, AICp, SBCp and PRESSp (b) Find just one best subset regression model according to the above

criteria and state your reasons.

p 1 2 3 4 5 SSEp r2 r2.adj Cp AICp SBCp PRESSp

1 2 0 0 1 0 0 4756.056 0.2718 0.2521 6.9711 191.3409 194.6680 5182.089

1 2 0 0 0 1 0 6120.640 0.0629 0.0376 19.0132 201.1785 204.5057 6744.847

1 2 0 0 0 0 1 6411.558 0.0184 -0.0082 21.5805 202.9895 206.3167 7521.225

1 2 0 1 0 0 0 6481.452 0.0077 -0.0192 22.1973 203.4124 206.7395 7579.467

1 2 1 0 0 0 0 6531.213 0.0000 -0.0270 22.6364 203.7107 207.0378 7866.668

2 3 0 1 1 0 0 3783.157 0.4208 0.3886 0.3855 184.4154 189.4060 4549.213

2 3 1 0 1 0 0 4370.331 0.3309 0.2937 5.5671 190.0423 195.0329 5470.343

2 3 0 0 1 1 0 4739.383 0.2744 0.2341 8.8239 193.2039 198.1946 5424.335

2 3 0 0 1 0 1 4750.751 0.2726 0.2322 8.9242 193.2974 198.2880 5663.745

2 3 0 1 0 1 0 6070.340 0.0706 0.0190 20.5693 202.8567 207.8474 7341.404

2 3 0 0 0 1 1 6073.444 0.0701 0.0185 20.5967 202.8767 207.8673 7389.767

2 3 1 0 0 1 0 6120.302 0.0629 0.0109 21.0102 203.1764 208.1671 7662.934

2 3 0 1 0 0 1 6312.616 0.0335 -0.0202 22.7073 204.3830 209.3737 8276.004

2 3 1 0 0 0 1 6411.285 0.0184 -0.0361 23.5781 204.9879 209.9786 8753.436

2 3 1 1 0 0 0 6448.660 0.0127 -0.0422 23.9079 205.2146 210.2053 8350.733

3 4 1 1 1 0 0 3755.255 0.4250 0.3758 2.1392 186.1266 192.7809 4933.377

3 4 0 1 1 1 0 3772.562 0.4224 0.3729 2.2920 186.3060 192.9602 4708.035

3 4 0 1 1 0 1 3782.245 0.4209 0.3713 2.3774 186.4059 193.0602 4955.800

3 4 1 0 1 0 1 4359.345 0.3326 0.2754 7.4702 191.9441 198.5983 5986.127

3 4 1 0 1 1 0 4370.329 0.3309 0.2735 7.5671 192.0422 198.6965 5727.281

3 4 0 0 1 1 1 4731.979 0.2755 0.2134 10.7586 195.1429 201.7972 5904.062

3 4 0 1 0 1 1 5992.029 0.0826 0.0040 21.8782 204.3503 211.0046 8040.035

3 4 1 1 0 1 0 6035.794 0.0759 -0.0033 22.2644 204.6341 211.2884 7986.608

3 4 1 0 0 1 1 6073.440 0.0701 -0.0096 22.5967 204.8766 211.5309 8554.830

3 4 1 1 0 0 1 6269.788 0.0401 -0.0422 24.3294 206.1175 212.7718 9148.679

4 5 1 1 1 1 0 3740.114 0.4274 0.3600 4.0056 187.9691 196.2869 5112.528

4 5 1 1 1 0 1 3755.138 0.4251 0.3574 4.1382 188.1254 196.4432 5373.499

4 5 0 1 1 1 1 3770.654 0.4227 0.3548 4.2751 188.2862 196.6040 5105.065

4 5 1 0 1 1 1 4359.281 0.3326 0.2540 9.4696 193.9435 202.2613 6255.259

4 5 1 1 0 1 1 5950.595 0.0889 -0.0183 23.5126 206.0797 214.3975 8804.993

5 6 1 1 1 1 1 3739.478 0.4275 0.3407 6.0000 189.9624 199.9438 5545.949
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7. (20%) Toxicity experiment. In an experiment testing the efect of a toxic substance, 1,500 exper-

imental insects were divided at random into six groups of 250 each. The insects in each group were

exposed to a oxed dose of the toxic substance. A day later, each insect was observed. Death from

exposure was scored 1, and survival was scored 0. The results are shown below; Xj denotes the dose

level (on a logarithmic scale) administered to the insects in group j and Y.j denotes the number of in-

sects that died out of the 250 (nj) in the group. The estimated proportions is denoted by pj = Y.j/nj .

j: 1 2 3 4 5 6

Xj : 1 2 3 4 5 6

nj : 250 250 250 250 250 250

Y.j 28 53 93 126 172 197

Simple Logistic regression model is assumed to be appropriate. The R output for the logistic regression

is given below.

(a) State the otted logistic response function.

(b) Obtain exp(b1) and interpret this number.

(c) What is the estimated probability that an insect dies when the dose level is X = 3.5?

(d) What is the estimated median lethal dose-that is, the dose for which 50 percent of the experimental

insects are expected to die?

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.67466 0.08285 -32.28 5.49e-06 ***

X 0.67908 0.02128 31.92 5.74e-06 ***

---

Signif. codes: 0 8***9 0.001 8**9 0.01 8*9 0.05 8.9 0.1 89 1

Residual standard error: 0.089 on 4 degrees of freedom

Multiple R-squared: 0.9961, Adjusted R-squared: 0.9951

F-statistic: 1019 on 1 and 4 DF, p-value: 5.743e-06
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計算頁

“堅持做對的事，永遠不會錯。”
“You are never wrong to do the right thing.”

— 高年級實習生 (The intern, 2015)
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