14.3 Partial Derivatives Page 1/5

THOMAS' CALCULUS (12/E) 14.3 Partial Derivatives

開課班級: (105-2) 通訊 1/電機 1/智財學程 微積分 授課教師: 吳漢銘 (國立臺北大學統計學系 副教授)

教學網站: http://www.hmwu.idv.tw

7 /D	网络	14. 7	
系級:	學號:	姓名:	

1 Partial Derivatives of a Function of Two Variables

	_,	,		
(x, y) with hile treatin	respect to g	as a	is obtain	ned by different
			(example1, p76
	hile treatin	(x,y) with respect to hile treating	(x,y) with respect to as a	(x,y) with respect to is obtain thile treating as a (

Ex.	2	(example2,	p767)

Find $\partial f/\partial y$ as a function if $f(x,y) = y \sin xy$.

sol:

Find f_x and f_y as functions if $f(x,y) = \frac{2y}{y + \cos x}$.

sol:

Find $\partial z/\partial x$ if the equation $yz - \ln z = x + y$ defines z as a function of the two independent variables x and y and the partial derivative exists.

sol:

Find $\partial f/\partial z$ if x, y and z are independent variables and $f(x, y, z) = x \sin(y + 3z)$.
sol:

2 Second-Order Partial Derivatives

2.1	Differentiate $f(x,y)$ twice, we produce its second-order derivatives.
	·
2.2	Theorem 2: The Mixed Derivative Theorem
	If $f(x,y)$ and its partial derivatives are defined throughout
	an open region containing a point (a,b) and are all continuous at (a,b) , then
	© Ex. 6 (example9, p770)
	If $f(x,y) = x \cos y + ye^x$, find the second-order derivatives.
	sol:

Find
$$\partial^2 w/\partial x \partial y$$
 if $w = xy + \frac{e^y}{y^2 + 1}$.

sol:

Find f_{yxyz} if $f(x, y, z) = 1 - 2xy^2z + x^2y$.

sol:

14.3 Partial Derivatives Page 5/5

實習課練習 (EXERCISE 14.3)

- 7. Find $\partial f/\partial x$ and $\partial f/\partial y$: $f(x,y) = \sqrt{x^2 + y^2}$.
- **16.** Find $\partial f/\partial x$ and $\partial f/\partial y$: $f(x,y) = e^{xy} \ln y$.
- **21.** Find $\partial f/\partial x$ and $\partial f/\partial y$: $f(x,y) = \int_x^y g(t) \ dt$, (g is continuous for all t).
- **22.** Find $\partial f/\partial x$ and $\partial f/\partial y$: $f(x,y) = \sum_{n=1}^{\infty} (xy)^n$.
- **25.** Find f_x, f_y and f_z : $f(x, y, z) = x \sqrt{y^2 + z^2}$.
- **32.** Find f_x, f_y and f_z : $f(x, y, z) = e^{-xyz}$.
- **43.** Find all the second-order partial derivatives: $g(x,y) = x^y + \cos y + y \sin x$.
- **52.** Verify that $w_{xy} = w_{yx}$: $w = e^x + x \ln y + y \ln x$.
- **66.** Find the value of $\partial x/\partial z$ at the point (1, -1, -3) if the equation $xz+y\ln x-x^2+4=0$ defines x as a function of the two independent variables y and z and the partial dervitive exists.
- **72.** Let $f(x,y) = \begin{cases} \sqrt{x}, & x \ge 0 \\ x^2, & x < 0. \end{cases}$

Find f_x, f_y, F_{xy} and f_{yx} and state the domain for each partial derivative.