THOMAS' CALCULUS (12/E)

7.5 Indeterminate Forms and L'Hopital's Rule

開課班級: (105-2) 通訊1/電機1/智財學程 微積分 授課教師: 吳漢銘 (國立臺北大學統計學系 副教授)

教學網站: http://www.hmwu.idv.tw

系級:	學號:	姓名:

1 Indeterminate Form 0/0

1.1	If the continuous functions $f(x)$ and $g(x)$ are both	 at $x = a$, then	
	cannot be found by substituting $x = a$.	_	

1.2	The s	substitution	produces	, a meaningless expression, which we cannot eval-
	uate.	We use	as a	notation for an expression known as an

1.3 Theorem: L'Hopital's Rule (First Form)

Suppose that ______, that f'(a) and g'(a) exist, and that $g'(a) \neq 0$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} =$ _____.

Proof:

1.4 Theorem: L'Hopital's Rule (Stronger Form)

Suppose that ______, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} =$$

assuming that the limit on the right side exists.

1.5 Using L'Hopital's Rule

To find $\lim_{x\to a} \frac{f(x)}{g(x)}$ by L'Hopital's Rule,

- (a) continue to differentiate f and g, so long as we still get the form _____ at x = a.
- (b) But as soon as one or the other of these derivatives is different from ____ at x=a we stop differentiating.
- (c) L'Hopital's Rule does not apply when either the _____ or has a finite _____ limit.

(a)
$$\lim_{x\to 0} \frac{3x - \sin x}{x} =$$

(b)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} =$$

(c)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1-x/2}{x^2} =$$

(d)
$$\lim_{x\to 0} \frac{x - \sin x}{x^3} =$$

 $\ensuremath{\mathfrak{O}}$ Ex. 2 (example2, p398)

Find $\lim_{x\to 0} \frac{1-\cos x}{x+x^2}$.

sol:

- (a) $\lim_{x \to 0^+} \frac{\sin x}{x^2} =$
- (b) $\lim_{x \to 0^-} \frac{\sin x}{x^2} =$

Indeterminate Form $\infty/\infty, \infty \cdot 0, \infty - \infty$ 2

 $2.1\,$ L'Hopital's Rule applies to the indeterminate form .

2.2 If _____ and ____ as $x \to a$ then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \underline{\qquad}$$

provided the limit on the right exists.

2.3 In the notation $x \to a$ may be either or .

2.4 Moreover $x \to a$ may be replaced by the one-sided limits _____ or ____.

(a)
$$\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x} =$$

(b) $\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}} =$

(c)
$$\lim_{x\to\infty} \frac{e^x}{x^2} =$$

- (a) Find $\lim_{x\to\infty} (x\sin\frac{1}{x})$.
- (b) Find $\lim_{x\to 0^+} (\sqrt{x} \ln x)$. sol:

Ex. 6 (example6, p399)
$$\text{Find } \lim_{x \to 0} (\frac{1}{\sin x} - \frac{1}{x}).$$
 sol:

3 Indeterminate Powers

3.1 If $\lim_{x\to a} \ln f(x) = L$, then $\lim_{x\to a} f(x) =$. Here a may be either finite or infinite.

3.2	Theorem:	Cau	chu's	Mean	Value	Theorem
0.4	T 100010110.	-cuu	City 5	IVICUIO	r wowc	110001011

Suppose functions f and g are continuous on [a,b] and differentiable throughout (a,b) and also suppose $g'(x) \neq 0$ throughout (a,b). Then there exists a number c in (a,b) at which

$$\frac{f'(c)}{g'(c)} = \underline{\hspace{1cm}}.$$

	(example7,	p400
Apply l'Hôpital's Rule to show that $\lim_{x\to 0^+} (1+x)^{1/x} = e$		
sol:		

Ø Ex. 8	(example8,	p400)
Find $\lim_{x \to \infty} x^{1/x}$.		
sol:		

實習課練習 (EXERCISE 7.5)

Use L'H \hat{o} pital Rule to find the limits.

5.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
.

8.
$$\lim_{x \to -5} \frac{x^2 - 25}{x + 5}$$
.

14.
$$\lim_{t\to 0} \frac{\sin 5t}{2t}$$
.

20.
$$\lim_{x\to 1} \frac{x-1}{\ln x - \sin \pi x}$$
.

27.
$$\lim_{\theta \to 0} \frac{3^{\sin \theta} - 1}{\theta}.$$

29.
$$\lim_{x\to 0} \frac{x2^x}{2^x-1}$$
.

34.
$$\lim_{x\to 0^+} \frac{\ln(e^x-1)}{\ln x}$$
.

41.
$$\lim_{x\to 1^+} (\frac{1}{x-1} - \frac{1}{\ln x}).$$

46.
$$\lim_{x \to \infty} x^2 e^{-x}$$
.

48.
$$\lim_{x\to 0} \frac{(e^x-1)^2}{x\sin x}$$
.

$$53. \lim_{x \to \infty} (\ln x)^{1/x}.$$

58.
$$\lim_{x\to 0} (e^x + x)^{1/x}$$
.

59.
$$\lim_{x\to 0^+} x^x$$
.

60.
$$\lim_{x\to 0^+} (1+\frac{1}{x})^x$$
.

62.
$$\lim_{x\to\infty} (\frac{x^2+1}{x+2})^{1/x}$$
.

73.
$$\lim_{x \to \infty} \frac{e^{x^2}}{xe^x}.$$