THOMAS' CALCULUS (12/E) 7.2 Natural Logarithms

開課班級: (105-2) 通訊 1/電機 1/智財學程 微積分 授課教師: 吳漢銘 (國立臺北大學統計學系 副教授)

	技味教師: 英漢站 (國立臺北入学統計学术 画教技) 教學網站: http://www.hmwu.idv.tw	
	系級: 學號: 姓名:	
1	Definition of the Natural Logarithm Function	
1.1	The natural logarithm of a positive number x , written as, is the value of integral.	of an
1.2	2 Definitions: The Natural Logarithm Function	
	$ \ln x = , x > 0 $	
1.3	3 If $x > 1$, then $\ln x$ is the area under the curve from	_ to
1.4	For $0 < x < 1$, $\ln x$ gives the under the curve from to	
1.5	Definitions: The Number e	
	The number e is that number in the domain of the natural logarithm satisfying a .	ng
1.6	$ \ln 1 = $	
1.7	The graph of $y = \ln x$ and its relation to the function $y = 1/x$, $x > 0$. The graph of the logarithm rises above the x-axis as x moves from 1 to the right, it falls below the axis as x moves from 1 to the left. (圖示如下)	and

1.8 Geometrically, the number e corresponds to the point on the x-axis for which the area under the graph of _____ and above the interval ____ is the exact area of the unit square.

2 The Derivative of $y = \ln x$

$$2.1 \frac{d}{dx} \ln x = \underline{} = \underline{}$$

$$2.2 \ y = \ln u$$

$$\frac{d}{dx}\ln u = \underline{\qquad}, \quad u > 0$$

$$\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100$$

$$1. \ \frac{d}{dx} \ln 2x =$$

$$2. \ \frac{d}{dx}\ln(x^2+3) =$$

3.
$$\frac{d}{dx} \ln ax =$$

3 Properties of Logarithms

3.1 Theorem 2: Properties of Logarithms

For any numbers a>0 and x>0, the natural logarithm satisfies the following rules:

- (a) Product Rule:
- (b) Quotient Rule:
- (c) Reciprocal Rule:
- (d) Power Rule: _____

1	_	_	,	
	Ex.	2	 (example2,	p372

- 1. $\ln 4 + \ln \sin x =$
- 2. $\ln \frac{x+1}{2x-3} =$
- 3. $\ln \sec x =$
- 4. $\ln \sqrt[3]{x+1} =$

4 The Integral $\int (1/u)du$

4.1 If u is a differentiable function that is never zero,

$$\int \frac{1}{u} \ du = \underline{\qquad}.$$

4.2 If u = f(x), then du =

$$\int \frac{1}{u} du = \underline{\qquad} = \underline{\qquad}.$$

$$\int_0^2 \frac{2x}{x^2 - 5} \ dx$$

sol:

5 The Integral of $\tan x$, $\cot x$, $\sec x$ and $\csc x$

$$5.1 \int \tan u \ du = \underline{\hspace{1cm}}$$

Proof:

$$5.2 \int \cot u \ du = \underline{\hspace{1cm}}$$

Proof:

$$5.3 \int \sec u \ du = \underline{\qquad}$$

Proof:

$$5.4 \int \csc u \ du = \underline{\hspace{1cm}}$$

Proof:

$$\int_0^{\pi/6} \tan 2x \ dx$$
sol:

6 Logarithmic Differentiation

Find dy/dx if $y = \frac{(x^2+1)(x+3)^{1/2}}{x-1}$, x > 1.

sol:

實習課練習 (EXERCISE 7.2)

- 2. Express the following logarithms in terms of $\ln 5$ and $\ln 7$. (a) $\ln(1/125)$, (b) $\ln 9.8$, (c) $\ln 7\sqrt{7}$, (d) $\ln 1225$, (e) $\ln 0.056$, (f) $(\ln 35 + \ln(1/7))/(\ln 25)$.
- **3.** Simplify the expressions: (a) $\ln \sin \theta \ln(\frac{\sin \theta}{5})$, (b) $\ln(3x^2 9x) + \ln(\frac{1}{3x})$, (c) $\frac{1}{2}\ln(4t^4) \ln 2$.
- \square Find the derivative of y with respect to x, or t, as appropriate.

8.
$$y = \ln(t^3/2)$$

15.
$$y = t(\ln t)^2$$

22.
$$y = \frac{x \ln x}{1 + \ln x}$$

35.
$$y = \int_{x^2/2}^{x^2} \ln \sqrt{t} \ dt$$

 \square Evaluate the integrals:

38.
$$\int_{-1}^{0} \frac{3}{3x - 2} \ dx$$

$$44. \int_2^4 \frac{dx}{x \ln x}$$

45.
$$\int_{2}^{4} \frac{dx}{x(\ln x)^2}$$

52.
$$\int_0^{\pi/12} 6 \tan 3x \ dx$$

$$53. \int \frac{dx}{2\sqrt{x} + 2x}$$

 \square Use logarithmic differentiaton to find the derivative of y with respect to the given independent variable.

55.
$$y = \sqrt{x(x+1)}$$

62.
$$y = \frac{1}{t(t+1)(t+2)}$$

67.
$$y = \sqrt[3]{\frac{x(x-2)}{x^2+1}}$$