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本章大綱

 Kernel Methods, Kernel Trick
 Kernel Data and Its Properties

 PCA/SIR in the Euclidean Space
 Kernel PCA, Kernel SIR in a Non-linear Feature Space

 Relations Towards Other Methods
 KSIR for Nonlinear Dimensional Reduction
 Experiments on Classification
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核方法 (Kernel Methods)
 Aronszajn (1950) and Parzen (1962) first to employ kernel methods in statistics.

 Aizerman et al. (1964) used positive definite kernels which was closer to “kernel 
trick”, they argue that a positive definite kernel is identical to a dot product in the 
feature space.

 Scholkopf et al (1998) point out that kernels can be used to construct 
generalization of any algorithm that can be carried out in terms of dot products.

 For last 20 years, there have seen a large number of kernelization of various 
algorithms. (PCA, LDA, CCA, PLS,…)

 Boser et al (1992), to construct SVMs, 
a generalization of the so-called 
optimal hyperplane algorithm.
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Prepare Kernel Data

xj

xi

Φ(xj)

Φ(xi)
?

理論上

事實上
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Data Representation

 Data are not represented individually anymore, but only through 
a set of pairwise comparisons.

 The representation as a square matrix does not depend on the 
nature of the objects to be analyzed.

 The size of the matrix used to represent a dataset of n objects is 
always n by n.
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Kernel as Inner Product

(Aronszajn 1950)

A Hilbert space is a vector space endowed with a dot product  that is complete for the norm 
induced.Rp with the classical inner product is an example of a finite-dimensional Hilbert 
space. David Hilbert (01/23/1862 – 02/14/1943)

German mathematician 
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Reproducing Kernel Hilbert Space
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Kernel Trick

 The kernel Trick was first published in the 1964 paper Theoretical foundations 
of the potential function method in pattern recognition learning.

 Any algorithm for vectorial data that can be expressed only in terms of dot 
products between vectors can be performed implicitly in the feature space 
associated with any kernel, by replacing each dot product by a kernel evaluation.

 It is a very convenient trick to transform linear methods, such as LDA or PCA 
into nonlinear methods, by simply replacing the classic dot product by a more 
general kernel.

 The kernel trick transforms any algorithm that solely dependents on the dot 
product between two vectors. Wherever a dot product is used, it is replaced with 
the kernel function.

 The non-linear algorithm is the linear algorithm operating in the feature space.
 Kernelization: the operation that transforms a linear algorithm into a more 

general kernel method.
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Kernel Data: Properties

 Kernel map can bring the data distribution to better 
elliptical symmetry. Kernel data are (with empirical and 
theoretical justification)
 Better elliptically symmetrically distributed.
 Better approximately normal (Gaussian)

 Raw data on Euclidean space Rp

 Kernel data on a RKHS Hk
 Via a specific statistical notion of classical approach on Rp

 Kernel approach on  Hk, which is exactly the classical procedure on kernel data.

 Main goal: Parallel to the classical multivariate statistical analysis, we aim to 
develop an analysis tool in the Gaussian reproducing kernel Hilbert space.

 Main advantage: Nonparametric approach with “parametric-plus” 
computing load.

parametric: classical multivariate analysis procedures.
plus: kernel data preparation.
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Example: Better Elliptical Symmetry
 Kernel map can bring the data distribution to better elliptical 

symmetry.

Scatterplot (x1, x2) Kernel data Scatterplot

 Using Gaussian kernel with 
scale=0.05. 

 The raw data is scaled to have unit 
variance of each column before  
transformation
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Example: Normal Probability Plot

x2 Best four, 
kernel data

Worst four, 
kernel data

Median 
four, 

kernel data
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Example: Justification of Gaussianity

For details:
Huang, S.Y., Hwang, C. R. and Lin, M.H. Kernel Fisher’s Discriminant Analysis in Gaussian 
Reproducing Kernel Hilbert Space.

Theoretical Justification of Gaussianity

Empirical Justification of Gaussianity:
Kolmogorov-Smirnov Test: H0:  The data follow a normal distribution

0.05
0.01

# p-vaule > 0.05 = 97,

# p-vaule > 0.01 =142;

Prepare Your Data to Do the Above 
Empirical Justification
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PCA in the Euclidean Space
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Kernel PCA
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Kernel PCA: kpca {kernlab}

> library(kernlab)
> rbf <- rbfdot(sigma = 0.05) #Radial Basis kernel function 
> rbf
Gaussian Radial Basis kernel function. 
Hyperparameter : sigma =  0.05 

> KX <- kernelMatrix(kernel=rbf, x=as.matrix(iris[,1:4])) # calculate kernel matrix
> dim(KX)
[1] 150 150

• rbfdot (Radial Basis kernel function)
• polydot (Polynomial kernel function
• vanilladot (Linear kernel function)
• tanhdot (Hyperbolic tangent kernel function) 

test <- sample(1:150, 20)
iris.kpca <- kpca(~., data=iris[-test, -5], kernel="rbfdot", kpar=list(sigma=0.2), 
features=2)

# print the principal component vectors
pcv(iris.kpca)

# plot the data projection on the components
plot(rotated(iris.kpca), col=as.integer(iris[-test, 5]), 

xlab="1st Principal Component",
ylab="2nd Principal Component",
main="KPCA for iris data")

# embed remaining points 
emb <- predict(iris.kpca, as.matrix(iris[test, -5]))
points(emb, col=iris[test, 5], pch=17, cex=1.5, asp=1)

kernlab: Kernel-Based Machine Learning Lab
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SIR in the Euclidean Space

 Li (1991) introduced the following model
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SIR: Algorithm
17/34



http://www.hmwu.idv.tw

SIR: Theorem
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Kernel SIR in a Non-linear Feature Space

Kernel SIR: Kernelize the SIR algorithm
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KSIR: Algorithm 
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KSIR (conti.)
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KSIR (conti.)
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Normalization and Projection
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Centering in Feature Space

For Testing Data

For Training Data
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Reduced Features

 we are not working in the full 
feature space, but just in a 
comparably small linear subspace 
of it, whose dimension equals at 
most the number of observations.

 Working in a space whose 
dimension equals the number of 
observations can pose difficulties. 

 To deal with these, one can either 
use only a subset of the extracted 
features, or use some other form 
of capacity control or 
regularization.

For Theoretical details:

Lee, Y.J. and Huang, S.Y. (2006), Reduced support vector machines: a statistical theory, IEEE 
Transactions on Neural Networks, accepted.
http://dmlab1.csie.ntust.edu.tw/downloads
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Relations Towards Other Methods

 KSIR generalizes SIR to a nonlinear one by kernelization of the SIR algorithm.
 It finds nonlinear d.r. subspace, a central d.r. subspace in Hk
 A semiparametric method.
 SIR: spectrum analysis of cov(E[x|y]) wrt cov(x)
 KSIR: spectrum analysis of a generalized association measure.
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Relations Towards Other Methods

Kernel Fisher discriminant Analysis as special case of CCA. 
(Kuss, M. and Graepel, T: The Geometry Of Kernel Canonical Correlation Analysis. (108), Max 
Planck Institute for Biological Cybernetics, Tübingen, Germany (May 2003)

Chen, C. H., and Li, K. C. (2001)
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Visualization: Square Data (150x2)
KPCA

d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4
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V3

V1

V2

V3

s = 0.01 s = 0.1 s = 1 s = 10 s = 0.01 s = 0.1 s = 1 s = 10

KSIR

V1

V2

V3

V1
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V3

H=8

KPCA KSIR
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Visualization: Three Clusters Data (220x2)
KPCA KSIR

d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4
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Visualization: Iris Data (150x4)

 The sepal length, sepal 
width, petal length, and 
petal width are measured in 
centimeters on 50 iris 
specimens from each of 
three species, Iris setosa, I. 
versicolor, and I. virginica. 
Fisher (1936)

PCA SIR

KPCA KSIR
Gaussian s=0.05
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Visualization: Wine Data (178x18)
PCA SIR

KPCA KSIRGaussian s=0.05

 Wine data (n=178) are the results of a 
chemical analysis of wines grown in the 
same region in Italy but derived from three 
different cultivars.      
 The analysis determined the quantities of 
13 constituents found in each of the three 
types of wines.
 Past Usage
RDA : 100%, QDA 99.4%, 
LDA 98.9%, 1NN 96.1% 
(z-transformed data, loo)
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Visualization: Pendigit Data (7494x16)

 Pen-based 
recognition of 
handwritten 
Digits

 7494 instances, 
16 attributes

 10 classes

Gaussian 0.05
Random sampling 200

PCA SIR

KPCA KSIR
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Classification: UCI Data Sets

Gaussian 0.05
Random sampling 200
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Classification: Microarray Data Sets
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