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本章大綱&學習目標
 Types of Data Scales
 常用基礎敘述統計套件: MASS ，Hmisc，fBasics
 Why Data Transformations?
 Data Discretization, Reasons for Non-normality
 Common Transformations

 Range，Reciprocal, Square Root, Log,   Power Transformation ,  Box-Cox 
Transformations.

 範例: BUPA Liver Data Set

 Transformations for Proportions and  Percents: Logit Transformation
 Variance Stabilizing Transformations
 Standardization

 範例: Microarray Data of Yeast Cell Cycle, Crab Data

 Species Data Transformation: The Doubs Fish Data
 Sphering for Multivariate Variables
 Which Transformation?
 Normalization for Microarray Gene Expression Data
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Types of Data Scales
 Categorical (類別資料), discrete, or nominal (名目變數) — Values contain 

no ordering information: 性別、種族、教育程度、宗教信仰、交通工具、音
樂類型… (qualitative 屬質)

 Ordinal (順序) — Values indicate order, but no arithmetic operations are 
meaningful (e.g., "novice", "experienced", and "expert" as designations of 
programmers participating in an experiment); 非常同意，同意，普通，不
同意，非常不同意; 優，佳，劣。

 Interval — Distances between values are meaningful, but zero point is 
not meaningful. (e.g., degrees Fahrenheit)

 Ratio (Continuous Data 連續型資料)— Distances are meaningful and a 
zero point is meaningful (e.g., degrees K, 年收入、年資、身高、… 
(quantitative 計量)

 Ordinal methods cannot be used with nominal variable
 Nominal methods can be used with nominal, ordinal variables.
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MASS套件常用基礎指令 (1/2)

 MASS: nrow, ncol, dim, head, attributes, str, summary.

4/63

> library(MASS)
> data(Insurance)
> nrow(Insurance); ncol(Insurance)
[1] 64
[1] 5
> dim(Insurance)
[1] 64  5
> head(Insurance)

District  Group   Age Holders Claims
1        1    <1l   <25     197     38
2        1    <1l 25-29     264     35
3        1    <1l 30-35     246     20
4        1    <1l   >35    1680    156
5        1 1-1.5l   <25     284     63
6        1 1-1.5l 25-29     536     84
> attributes(Insurance)
$names
[1] "District" "Group"    "Age"      "Holders"  "Claims"  

$class
[1] "data.frame"

$row.names
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

[28] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
[55] 55 56 57 58 59 60 61 62 63 64

• Insurance資料集: 某保險公司在1973年第三季
車險保險人的相關資訊。

• District: 投保人家庭住址所在區域: 1-4 。
• Group: 所投保汽車的引擎排氣量(四個等級): <1公升, 1-

1.5公升, 1.5-2公升, >2公升。
• Age: 投保人年紀(四個組別): <25歲, 25-29歲, 30-35歲, 

>35歲。
• Holders: 投保人數量。
• Claims: 要求索賠的投保人數量。
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MASS套件常用基礎指令 (2/2)

 一般來說，可以透過平均值和中位數的差異程度來判別資料的偏倚程
度。當兩者相差過大，常常說明資料具有明顯的右偏或左偏情況。
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> str(Insurance)
'data.frame':   64 obs. of  5 variables:
$ District: Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
$ Group   : Ord.factor w/ 4 levels "<1l"<"1-1.5l"<..: 1 1 1 1 2 2 2 2 3 3 

...
$ Age     : Ord.factor w/ 4 levels "<25"<"25-29"<..: 1 2 3 4 1 2 3 4 1 2 

...
$ Holders : int  197 264 246 1680 284 536 696 3582 133 286 ...
$ Claims  : int  38 35 20 156 63 84 89 400 19 52 ...

> summary(Insurance)
District    Group       Age        Holders            Claims      
1:16     <1l   :16   <25  :16   Min.   :   3.00   Min.   :  0.00  
2:16     1-1.5l:16   25-29:16   1st Qu.:  46.75   1st Qu.:  9.50  
3:16     1.5-2l:16   30-35:16   Median : 136.00   Median : 22.00  
4:16     >2l   :16   >35  :16   Mean   : 364.98   Mean   : 49.23  

3rd Qu.: 327.50   3rd Qu.: 55.50  
Max.   :3582.00   Max.   :400.00 

平均值高於中位數的兩倍左右，資料有右偏趨勢。
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Hmisc套件: describe (1/2)

 Hmisc: describe 對於不同類型變數列出不同內容的結果，具有一套輸出規則
。對於一個取樣水準不超過10的數值型變數，會被預設為離散型變數。函數
會列出連續變數的各分位點值; 對於一個非二分變數，且其取樣水準不超過20
，則會列出該變數的頻率表; 當任一變數的取樣水準超過20，就會分別列出頻
率最低和最高的5個水準值。
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> install.packages("Hmisc")
> library(Hmisc)
> describe(Insurance[, 1:3])
Insurance[, 1:3] 

3  Variables      64  Observations
-------------------------------------------------------------------------
District 

n missing  unique 
64       0       4 

1 (16, 25%), 2 (16, 25%), 3 (16, 25%), 4 (16, 25%) 
-------------------------------------------------------------------------
Group 

n missing  unique 
64       0       4 

<1l (16, 25%), 1-1.5l (16, 25%), 1.5-2l (16, 25%), >2l (16, 25%) 
-------------------------------------------------------------------------
Age 

n missing  unique 
64       0       4 

<25 (16, 25%), 25-29 (16, 25%), 30-35 (16, 25%), >35 (16, 25%) 
-------------------------------------------------------------------------
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Hmisc套件: describe (2/2)
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> describe(Insurance[, 4:5])
Insurance[, 4:5] 

2  Variables      64  Observations
--------------------------------------------------------------------------------
Holders 

n missing  unique    Info    Mean     .05     .10     .25     .50     .75 
64       0      63       1     365   16.30   24.00   46.75  136.00  327.50 

.90     .95 
868.90 1639.25 

lowest :    3    7    9   16   18, highest: 1635 1640 1680 2443 3582 
--------------------------------------------------------------------------------
Claims 

n missing  unique    Info    Mean     .05     .10     .25     .50     .75 
64       0      46       1   49.23    3.15    4.30    9.50   22.00   55.50 

.90     .95 
101.70  182.35 

lowest :   0   2   3   4   5, highest: 156 187 233 290 400 
--------------------------------------------------------------------------------
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fBasics套件: basicStats
 fBasics: basicStats
 金融工程相關的套件，basicStats用於計算時間序列

資料基礎統計指標的函數。
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> install.packages("fBasics")
> library(fBasics)
> basicStats(Insurance$Holders)

X..Insurance.Holders
nobs                6.400000e+01
NAs                 0.000000e+00
Minimum             3.000000e+00
Maximum             3.582000e+03
1. Quartile         4.675000e+01
3. Quartile         3.275000e+02
Mean                3.649844e+02
Median              1.360000e+02
Sum                 2.335900e+04
SE Mean             7.784632e+01
LCL Mean            2.094209e+02
UCL Mean            5.205478e+02
Variance            3.878432e+05
Stdev               6.227706e+02
Skewness            3.127833e+00
Kurtosis            1.099961e+01

sum 23359, 約2.3萬投保人資訊
。且在District, Group, Age，
平均有365位投保人。

> library(timeDate)
> skewness(Insurance[, 4:5])
Holders   Claims 

3.127833 2.877292 
> kurtosis(Insurance[, 4:5])

Holders    Claims 
10.999610  9.377258 

偏態係數 (偏度): s=0: 分佈對稱，|s|<1: 對稱性較強>，
|s|>1 & s>0: 右偏，|s|>1 & s<0: 左偏
峰態係數 (峰度)

偏態係數=E(X-u)^3/sigma^3 
大於0：右偏分配
等於0：對稱分配
小於0：左偏分配
峰態係數=E(X-u)^4/sigma^4 
大於3：高峽峰
等於3：常態峰
小於3：低闊峰
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Symbolic Data (象徵性資料) 9/63

• Hans-Hermann Bock, Edwin Diday, 2000, Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical 
Information from Complex Data, Springer.

• Lynne Billard, Edwin Diday, 2003, From the Statistics of Data to the Statistics of Knowledge- Symbolic Data 
Analysis. Journal of the American Statistical Association, 98, pp.470-487

• Lynne Billard, Edwin Diday, 2007, Symbolic Data Analysis: Conceptual Statistics and Data Mining, Wiley; 1 edition.
• Edwin Diday, Monique Noirhomme-Fraiture, 2008, Symbolic Data Analysis and the SODAS Software, Wiley-

Interscience.

• How to do the EDA for symbolic data?
• How to do the transformation (e.g., standardization) for symbolic data?
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Classical (Numerical) Data Table 10/63

jth variables

subjects

transformation 
for each row

transformation 
for each column

ith sample

transformation 
for both rows 
and columns
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Data Transformations
 A transformation of a set of data points x1, x2, ..., xn is a 

function T that substitutes each observation xi with a new 
value T(xi). 

 Transformations should have the following properties:
 The order of the data is preserved by the transformation. 
 They are continuous  functions guaranteeing that points that 

are close together in raw form are also close together using 
their transformed values, relative to the scale used.

 They are smooth functions that have derivatives of all orders, 
and they are specified by elementary functions.

 In EDA, we might want to change the shape of data 
(reexpressed) to facilitate visualization, smoothing, and 
other analyses. 
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Why Data Transformations? (1/2)

 Many statistical procedures make two assumptions that are 
relevant to data transformation: 
 (a) the variables (or their error terms) are normally distributed.
 (b) homoscedasticity or homogeneity of variance, meaning that the 

variance of the variable remains constant over the observed range 
of some other variable. 

 In regression analyses the assumption (b) is that the variance 
around the regression line is constant across the entire observed 
range of data. 

 In ANOVA analyses, the assumption (b) is that the variance in 
one cell is not significantly different from that of other cells. 

 In some cases, transforming the data will make it fit the 
assumptions better.
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Why Data Transformations? (2/2)

 Transforms are usually applied:
 so that the data appear to more closely meet the assumptions of a 

statistical inference procedure that is to be applied, 
 to make it easier to visualize (appearance of graphs),
 to improve interpretability, even if no formal statistical analysis or 

visualization is to be performed. 
 to make descriptors that have been measured in different units 

comparable, 
 to make the relationships among variables linear,
 to modify the weights of the variables or objects (e.g. give the same 

length (or norm) to all object vectors)
 to code categorical variables into dummy binary variables.

 Guidance for how data should be transformed, or whether a 
transformation should be applied at all, should come from the 
particular statistical analysis to be performed.
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Reasons for Using Transformations (1/2)

1. Convenience
 A transformed scale may be as natural as the original scale and more 

convenient for a specific purpose (e.g.  percentages rather than original 
data, sines rather than degrees)

2. Reducing skewness
 A distribution that is symmetric or nearly so (e.g, Gaussian distribution) 

is often easier to handle and interpret than a skewed distribution. 
 To reduce right skewness, take roots or logarithms or reciprocals (roots are 

weakest). 
 To reduce left skewness, take squares or cubes or higher powers.

3. Equal spreads 
 Equal spreads makes data easier to handle and interpret. 
 Each data set or subset having about the same spread or variability is a 

condition called homoscedasticity: its opposite is called 
heteroscedasticity. 

14/63

http://fmwww.bc.edu/repec/bocode/t/transint.html
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Reasons for Using Transformations (2/2)

4.  Linear relationships 
 It is easier to think about patterns (relationships between variables) that 

are approximately linear than about patterns that are highly curved. 
 This is vitally important when using linear regression, which amounts to 

fitting such patterns to data. 
 e.g, a plot of logarithms of a series of values against time has the property that 

periods with constant rates of change (growth or decline) plot as straight lines.
 The model y = a ebx is made linear by ln y = ln a + bx.

5. Additive relationships 
 Relationships are often easier to analyze when additive rather than (say) 

multiplicative. 
 So y = a + bx in which two terms a and bx are added is easier to deal with 

than y = axb in which two terms a and xb are multiplied. 
 Additivity is a vital issue in analysis of variance.

15/63
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Data Transformation
 Smoothing: This uses binning, regression, and clustering to 

remove noise from the data.

 Attribute construction: In this routine, new attributes are 
constructed and added from the given set of attributes.

 Aggregation: In this summary or aggregation, operations are 
performed on the data.

 Normalization: Here, the attribute data is scaled so as to fall 
within a smaller range.

 Discretization: In this routine, the raw values of a numeric 
attribute are replaced by interval label or conceptual label.

 Concept hierarchy generation for nominal data: Here, 
attributes can be generalized to higher level concepts.
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Data Discretization
 Data discretization transforms numeric data by mapping values to interval or concept 

labels. 

 by binning: This is a top-down unsupervised splitting technique based on a 
specified number of bins.

 by histogram analysis: In this technique, a histogram partitions the values of an 
attribute into disjoint ranges called buckets or bins. It is also an unsupervised method.

 by cluster analysis: In this technique, a clustering algorithm can be applied to 
discretize a numerical attribute by partitioning the values of that attribute into clusters 
or groups.

 by decision tree analysis: Here, a decision tree employs a top-down splitting 
approach; it is a supervised method. To discretize a numeric attribute, the method 
selects the value of the attribute that has minimum entropy as a split-point, and 
recursively partitions the resulting intervals to arrive at a hierarchical discretization.

 by correlation analysis: This employs a bottom-up approach by finding the best 
neighboring intervals and then merging them to form larger intervals, recursively. It is 
supervised method.
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Reasons for Non-normality
 The mistakes appeared in data entry.
 The missing data values were not declared as missing.
 The presence of outliers (scores that are extreme relative to 

the rest of the sample).
 The nature of the variable itself. 

 How does one tell when a variable is violating the 
assumption of normality?
 "eyeballing the data," or visual inspection (Orr, Sackett, and 

DuBois, 1991), 
 simple examination of skew and kurtosis,
 examination of QQ plots,
 inferential tests of normality: Kolmogorov-Smirnov test.
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Common Transformations (1/3)
19/63

> par(mfrow=c(1,4))
> raw.data <- 0:100
> pa.data <- ifelse(raw.data >= 60, 1, 0)
> id <- which(pa.data==1)
> plot(raw.data[id], pa.data[id], main="present-absent", 
+ type="l", lwd=2, col="blue", ylim=c(-1, 2), xlim=c(0, 100))
> points(raw.data[-id], pa.data[-id], type="l", lwd=2, col="blue")
> 
> log.data <- log(raw.data)
> plot(raw.data, log.data, main="log", type="l", lwd=2, col="blue")
> 
> sqrt10.data <- sqrt(raw.data)*10
> plot(raw.data, sqrt10.data, main="sqrt*10", type="l", lwd=2, col="blue", asp=1)
> abline(a=0, b=1)
> 
> trun.data <- ifelse(raw.data >= 80, 80, ifelse(raw.data < 20, 20, raw.data))
> plot(raw.data, trun.data, main="truncation", type="l", lwd=2, col="blue")

NOTE:  apply(raw.data.matrix, 2, log)
apply(raw.data.matrix, 2, function(x) sqrt(x)*10)
apply(raw.data.matrix, 2, myfun)
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Common Transformations (2/3)
20/63

> par(mfrow=c(1,4))
> raw.data <- 0:100
> trans.data <- raw.data/max(raw.data)
> plot(raw.data, trans.data, main="/max", type="l", lwd=2, col="blue")
> 
> trans.data <- raw.data/sum(raw.data) #Species profile transformation
> plot(raw.data, trans.data, main="/sum", type="l", lwd=2, col="blue")
> 
> trans.data <- raw.data/sqrt(sum(raw.data^2)) #length of 1, Chord transformation
> plot(raw.data, trans.data, main="norm (Chord)", type="l", lwd=2, col="blue")
> 
> trans.data <- sqrt(raw.data/sum(raw.data)) #Hellinger transformation
> plot(raw.data, trans.data, main="Hellinger", type="l", lwd=2, col="blue")

Other Transformations for community composition data: Chi-square distance transformation, Chi-square metric transformation
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Common Transformations (3/3)
21/63

> par(mfrow=c(1,3)); set.seed(12345)
> raw.data <- c(sample(0:60, 100, replace=T), sample(90:100, 5, replace=T))
> rank.data <- rank(raw.data)
> hist(raw.data, main="raw")
> hist(rank.data, main="rank")
> plot(raw.data, rank.data, main="rank", lwd=2, col="blue")
> 
> raw.data <- c(rnorm(100), rnorm(5)+ 2*sqrt(qchisq(0.975, 5)))
...
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Transformation Using the Range
 use the range of the variable as the divisor:

 z= x/(max(x)-min(x));   z= (x-min(x))/(max(x)-min(x)),  is bounded by zero and one, with at least one 
observed value at each of the end points.

22/63

x <- rnorm(50)
mycolor <- rainbow(150)[1:100]
z <- (x-min(x))/(max(x)-min(x))
plot(x, rep(1, length(x)), main="range (0, 1)", type="n", ylab="", ylim=c(0.3,1))
points(c(seq(min(x), max(x), length.out=100)), rep(1, 100), col=mycolor, cex=2, pch=15)
text(0, 0.95, "color spectrum")
points(x, rep(0.8, length(x)), col=mycolor, cex=2, pch=15)
text(0, 0.75, "x, col=mycolor")
points(sort(x), rep(0.6, length(x)), col=mycolor, cex=2, pch=15)
text(0, 0.55, "sort(x), col=mycolor")
points(x, rep(0.4, length(x)), col=mycolor[floor(z*99)+1], cex=2, pch=15)
text(0, 0.35, "x, col=mycolor[floor(z*99)+1]")

 The transformed variate is a 
linear function of the other one, 
so data standardized using 
these transformations will result 
in identical Euclidean distances.
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The Reciprocal Transformation
 The reciprocal, x to 1/x, with its sibling the negative reciprocal, x to -1/x, is 

a very strong transformation with a drastic effect on distribution shape. 
 The reciprocal reverses order among values of the same sign: largest 

becomes smallest, etc. 
 The negative reciprocal preserves order among 

values of the same sign.

23/63

 (In practice, we might want to multiply  or divide the results of 
taking the reciprocal by some constant, such as 1000 or 10000, to 
get  numbers that are easy to manage,  but that itself has no effect 
on skewness or linearity.)

 The reciprocal of a ratio may be interpreted as easily 
as the ratio itself: 
 population density (people per unit area) becomes 

area per person;

 persons per doctor becomes doctors per person;

 rates of erosion become time to erode a unit depth.



http://www.hmwu.idv.twhttp://www.hmwu.idv.tw

The Square Root Transformation
 The square root, x to x1/2 = sqrt(x), is a transformation with a 

moderate effect on distribution shape: it is weaker than the 
logarithm and the cube root. 

 It is used for reducing right skewness, and also has the advantage 
that it can be applied to zero values. 

 Note that the square root of an area has the units of a length. It is 
commonly applied to counted data, especially if the value are 
mostly rather small.
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> x <- sample(0:40, 50, replace=T)
> y <- sample(40:100, 10)
> z <- c(x,y)
> par(mfrow=c(1,2))
> hist(z)
> hist(sqrt(z))
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範例: Software Inspection Data
 The data were collected in response to efforts for process improvement 

in software testing by code inspection.
 First they look for inconsistencies, logical errors, etc., and decide what 

they perceive as defects. The defect types include compatibility, design, 
human-factors, standards, and others.

 The variables are normalized by the size of the inspection (the number 
of pages or SLOC (single lines of code): the preparation time in minutes 
(prepage, prepsloc), the total work hours in minutes for the meeting 
(mtgsloc), and the number of defects found (defpage, defsloc). 

 Interested in: understanding the relationship between the inspection 
time and the number of defects found. 
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> library('R.matlab')
> data <- readMat("software.mat")
> print(data)
...
> str(data)
List of 5
$ prepsloc: num [1:426, 1] 0.485 0.54 0.54 0.311 0.438 ...
$ defsloc : num [1:426, 1] 0.005 0.002 0.002 0.00328 0.00278 ...
$ mtgsloc : num [1:426, 1] 0.075 0.06 0.06 0.2787 0.0417 ...
$ prepage : num [1:491, 1] 6.15 1.47 1.47 5.06 5.06 ...
$ defpage : num [1:491, 1] 0.0385 0.0267 0.0133 0.0128 0.0385 ...
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Log Transformations (1/3)

 The data are skewed, and the relationship between the variables is difficult to 
understand. 

 We apply a log transform to both variables. Be careful about creating 
something that is not really there, but is just an artifact of the processing. 

 In any application of EDA, the analyst should go back to the subject area and 
consult domain experts to verify and help interpret the results.

26/63

par(mfrow=c(1,2))
xylim <- range(data$prepsloc, data$defsloc)
plot(data$prepsloc, data$defsloc, xlab="PrepTime(min)/SLOC", ylab="Defects/SLOC", 
main="Software Data", xlim=xylim, ylim=xylim)
logxylim <- range(log(data$prepsloc), log(data$defsloc))
plot(log(data$prepsloc), log(data$defsloc), xlab="Log PrepTime/SLOC", 
ylab="Log Defects/SLOC", main="Software Data", xlim=logxylim, ylim=logxylim)
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Log Transformations (2/3)
27/63

https://en.wikipedia.org/wiki/Data_transformation_%28statistics%29

The areas of the sovereign 
states and dependent territories 
in the world are plotted on the 
vertical axis against their 
populations on the horizontal 
axis. 

Source: 
http://www.biostathandbook.com/transformation.html 
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Log Transformations (3/3)

 Consider ratios y = p/q where p and q are both positive in practice. 
Examples are
 males / females;
 dependents / workers;
 downstream length / downvalley length. 

 Then y is somewhere between 0 and infinity, or between 1 and 
infinity. (If p = q, then y = 1. ) Such definitions often lead to 
skewed data, because there is a clear lower limit and no clear 
upper limit. 

 The logarithm, log y = log (p/q) = log p - log q, is somewhere 
between -infinity and infinity and p = q means that log y = 0. 
Hence the logarithm of such a ratio is likely to be more 
symmetrically distributed.
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Log Transformations: 
How to Handle Negative Data Values?

 In many cases, the variable of interest is positive and the log 
transformation is immediately applicable. However, some quantities (for 
example, profit) might contain a few negative values. How do you 
handle negative values if you want to log-transform the data?

Solution 1: Translate, then Transform
 log(Y+a) where a is the constant. 
 Some people like to choose a so that min(Y+a) is a very small positive 

number (like 0.001). Others choose a so that min(Y+a) = 1. For the latter 
choice, you can show that a = b – min(Y), where b is either a small 
number or is 1. 

 cond(x <= 0, -ln(-x + 1), ln(x + 1))

Solution 2: Use Missing Values
 A criticism of the previous method is that some practicing statisticians 

don't like to add an arbitrary constant to the data. 
 They argue that a better way to handle negative values is to use missing 

values for the logarithm of a nonpositive number. 
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Power Transformation (1/2)

 For data vectors (y1,..., yn) in which each yi > 0, the power 
transform is

30/63

 The power transform corresponds to a family of functions that are applied to 
create a monotonic transformation of data using power functions. 

 This transformation is used to stabilize variance, make the data more normal 
distribution-like, improve the validity of measures of association such as the 
Pearson correlation between variables and for other data stabilization 
procedures.

 When both negative and positive values are observed, it is more common to 
begin by adding a constant to all values, producing a set of non-negative 
data to which any power transformation can be applied.

https://en.wikipedia.org/wiki/Power_transform
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Box-Cox Transformations (1/3)

 The aim of the Box-Cox transformations is to ensure the usual assumptions 
for Linear Model hold. 

 Clearly not all data could be power-transformed to Normal. Draper and Cox 
(1969) studied this problem and conclude that even in cases that no power-
transformation could bring the distribution to exactly normal, the usual 
estimates of lambda will lead to a distribution that satisfies certain 
restrictions on the first 4 moments, thus will be usually symmetric.
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Box and Cox(1964)

Source: Box-Cox Transformations: An Overview, Pengfei Li, Department of Statistics, University of Connecticut, Apr 11, 2005
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Box-Cox Transformations (2/3)
32/63

http://onlinestatbook.com/2/transformations/box-cox.html

x <- seq(0.5, 2, length.out=100)
bc <- function(y, lambda){

(y^lambda -1)/lambda
} 
lambda <- seq(-2, 3, 0.5)
plot(0, 0, type="n", xlim=c(0.5, 2), 

ylim=c(-2, 2.5), main="Box-Cox transformation")
for(i in 1:length(lambda)){

points(x, bc(x, lambda[i]), type="l", col=i)
points(2, bc(2, lambda[i]), col=i, pch=i)

}
legend(0.7, 2.5, legend=as.character(rev(lambda)), 

lty=1, pch=length(lambda):1, 
col=length(lambda):1)

lambda = 0 ?
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Box-Cox Transformations (3/3)
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Source: Box-Cox Transformations: An Overview, Pengfei Li, Department of Statistics, University of Connecticut, Apr 11, 2005

> x <- rexp(1000)
> bc <- function(y, lambda){
+     (y^lambda -1)/lambda
+ } 
> bc1.x <- bc(x, 0.1)
> bc2.x <- bc(x, 0.268)
> bc3.x <- bc(x, 0.5)
> par(mfrow=c(2, 2))
> qqnorm(x); qqline(x, col="red")
> qqnorm(bc1.x, main="lambda=0.1")
> qqline(bc1.x, col="red")
> qqnorm(bc2.x, main="lambda=0.268") 
> qqline(bc2.x, col="red")
> qqnorm(bc3.x, main="lambda=0.5")
> qqline(bc3.x, col="red")
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範例: BUPA Liver Data Set
 The BUPA liver data set contains data on liver enzymes ALT and γGT. Suppose we are 

interested in using log(γGT) to predict ALT.  (a): there appears to be non-constant 
variance, and a Box–Cox transformation might help.

 Possibly, the transformation could be improved by adding a shift parameter to the log 
transformation. (c): in this case, the maximum of the likelihood is close to zero 
suggesting that a shift parameter is not needed. 
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https://en.wikipedia.org/wiki/Power_transform
 (d) The final panel shows the 

transformed data with a superimposed 
regression line. 

 Note that although Box–Cox 
transformations can make big 
improvements in model fit, there are 
some issues that the transformation 
cannot help with. In the current example, 
the data are rather heavy-tailed so that 
the assumption of normality is not 
realistic and a robust regression 
approach leads to a more precise model.
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Box-Cox Transformations: Summary
 It is not always necessary or desirable to transform a data 

set to resemble a normal distribution. However, if 
symmetry or normality are desired, they can often be 
induced through one of the power transformations.
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Modified Box-Cox Transformations36/63

Negative y's could be allowed. The transformation was 
reported to be successful in transform unimodal skewed 
distribution into normal distribution, but is not quite 
useful for bimodal or U-shaped distribution.

Source: Box-Cox Transformations: An Overview, Pengfei Li, Department of Statistics, University of Connecticut, Apr 11, 2005
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Transformations for Proportions and 
Percents: Logit Transformation (2/2)

 If values are naturally restricted to be in the range 0 to 1, not 
including the end-points, then a logit transformation may be 
appropriate: this yields values in the range (−∞,∞).

 The logit of a number p between 0 and 1 is given by the formula:

 When the function's parameter represents a probability p, the 
logit function gives the log-odds, or the logarithm of the odds 
p/(1 − p).
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Transformations for Proportions and 
Percents: Logit Transformation (2/2)

 This transformation treats very small and 
very large values symmetrically, pulling 
out the tails and pulling in the middle 
around 0.5 or 50%. The plot of p against 
logit(p) is thus a flattened S-shape.

 Strictly, logit p cannot be determined for 
the extreme values of 0 and 1 (100%): if 
they occur in data, there needs to be 
some adjustment.
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Variance Stabilizing Transformations
 Many types of statistical data exhibit a "variance-on-mean 

relationship", meaning that the variability is different for data 
values with different expected values. 

 A variance-stabilizing transformation aims to remove a variance-
on-mean relationship, so that the variance becomes constant 
relative to the mean. 

 Examples of variance-stabilizing transformations
 Fisher transformation for the sample correlation coefficient, 
 Square root transformation or Anscombe transform for Poisson 

data (count data), 
 Box-Cox transformation for regression analysis and 
 Arcsine square root transformation or angular transformation for 

proportions (binomial data). 
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https://en.wikipedia.org/wiki/Data_transformation_%28statistics%29



http://www.hmwu.idv.twhttp://www.hmwu.idv.tw

Standardization (1/5)

 z=x/s, will have a variance of one and a transformed mean equal 
to x.bar/s. 

 Standardization, z = (x-x.bar)/s, (called z-score): the new variate z 
will have a mean of zero and a variance of one. (also called 
centering and scaling.)

 If the variables are measurements along a different scale or if 
the standard deviations for the variables are different from one 
another, then one variable might dominate the distance (or 
some other similar calculation) used in the analysis: 

 Standardization is useful for comparing variables expressed in 
different units.

 In some multivariate contexts, the transformations may be 
applied to each variable separately.
 Standardization makes no difference to the shape of a distribution.
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Standardization (2/5)

 Standardization makes no difference to the shape of a 
distribution.

41/63

x <- rpois(500, lambda=1)
hist(x, main="rpois(500, lambda=1)"); z <- scale(x); hist(z, main="")
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Standardization (3/5)

In Clustering Analysis
 When the z-score transformation is used in a clustering context, it is 

important that it be applied in a global manner across all observations. 

 If standardization is done within clusters, then false and misleading 
clustering solutions can result [Milligan and Cooper, 1988].

In Calculating Distance/Similarity (e.g., multidimensional scaling)
 Euclidean distances calculated on data that have been transformed 

using the two formulas result in identical dissimilarity values.

 For robust versions of Equations, we can substitute the median and the 
interquartile range for the sample mean and sample variance.
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Standardization (4/5)
43/63

> head(USArrests)
Murder Assault UrbanPop Rape

Alabama      13.2     236       58 21.2
Alaska       10.0     263       48 44.5
Arizona       8.1     294       80 31.0
Arkansas      8.8     190       50 19.5
California    9.0     276       91 40.6
Colorado      7.9     204       78 38.7
> par(mfrow=c(4,1))
> r <- range(USArrests)
> hist(USArrests$Murder, xlim = r)
> hist(USArrests$Assault, xlim = r)
> hist(USArrests$UrbanPop, xlim = r)
> hist(USArrests$Rape, xlim = r)

> USArrests.std <- as.data.frame(
apply(USArrests, 2, scale))
> r.std <- c(-3, 3)
> hist(USArrests.std$Murder, xlim = r.std)
> hist(USArrests.std$Assault, xlim = r.std)
> hist(USArrests.std$UrbanPop, xlim = r.std)
> hist(USArrests.std$Rape, xlim = r.std)

USArrests {datasets}: Violent Crime Rates by US State
A data frame with 50 observations on 4 variables.
[1] Murder: Murder arrests (per 100,000)
[2] Assault: Assault arrests (per 100,000)
[3] UrbanPop: Percent urban population
[4] Rape: Rape arrests (per 100,000) 



http://www.hmwu.idv.twhttp://www.hmwu.idv.tw

Standardization (5/5)
44/63

> head(airquality )
Ozone Solar.R Wind Temp Month Day

1    41     190  7.4   67     5   1
2    36     118  8.0   72     5   2
3    12     149 12.6   74     5   3
4    18     313 11.5   62     5   4
5    NA      NA 14.3   56     5   5
6    28      NA 14.9   66     5   6
> r <- range(airquality[,1:4], na.rm = T)
> hist(airquality$Ozone , xlim = r)
> hist(airquality$Solar.R, xlim = r)
> hist(airquality$Wind, xlim = r)
> hist(airquality$Temp, xlim = r)
> 
> airquality.std <- as.data.frame(
apply(airquality, 2, scale))
> r.std <- c(-3, 3)
> hist(airquality.std$Ozone, xlim = r.std)
> hist(airquality.std$Solar.R, xlim = r.std)
> hist(airquality.std$Wind, xlim = r.std)
> hist(airquality.std$Temp, xlim = r.std)

airquality {datasets} 
New York Air Quality Measurements: Daily air quality measurements in New York, May to September 1973.
A data frame with 154 observations on 6 variables.
[1] Ozone: Ozone (ppb)
[2] Solar.R: Solar R (lang)
[3] Wind: Wind (mph)
[4] Temp: Temperature (degrees F)
[5] Month: Month (1--12)
[6] Day: Day of month (1--31) 
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範例: Microarray Data of Yeast Cell Cycle
 The data consists of several sub-sets collected under different conditions: alpha factor arrest, 

elutriation, arrest of cdc15 and cdc28 temperature-sensitive mutant. 
 Each of these sub-sets is a single experiment.  These experiment methods are used to synchronize 

the yeast cell cycle. Synchronized by alpha  factor arrest method: Spellman et al. (1999).
 Time course data: every 7 minutes and totally 18 time points.
 Known genes: there are 103 cell cycle-regulated genes by traditional method in G1, S, S/G2, G2/M, 

or M/G1.
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Image: http://www.pha.jhu.edu/~ghzheng/old/webct/note7_3.htm

Spellman et al., (1998). Comprehensive Identification of Cell Cycle-
regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray 
Hybridization. Molecular Biology of the Cell 9, 3273-3297. 
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Standardization in Time Series 
Microarray Gene Expression Experiments

46/63

The data map for 103 cell cycle-regulated genes and the plots of time courses for each phase. Each expression profile is normalized as mean equals zero and variance 1.

cell.raw <- read.table("trad_alpha103.txt", row.names=1, header=T)
head(cell.raw)
cell.xdata <- t(scale(t(cell.raw[,2:19]), center=T, scale=T))    
y.C <- as.integer(cell.raw[,1])
table(y.C)
no.cluster <- length(unique(y.C))            
cellcycle.color <- c("darkgreen", "blue", "red", "gray50", "orange")
p <- ncol(cell.raw) -1
ycolors <- cellcycle.color[y.C+1]
my.pch <- c(1:no.cluster)[y.C+1]    
phase <- c("G1", "S", "S/G2", "G2/M", "M/G1")
matplot(t(cell.xdata), pch = 1:p, lty=1, type = "l", ylab="gene expression", 

col=ycolors, xlab="time", main="Time series", xaxt="n")
time.label <- parse(text=paste("t[",0:p,"]",sep=""))        
axis(1, 1:(p+1), time.label)
legend("bottom", legend=phase, col=cellcycle.color, lty=1, horiz = T, lwd=2)
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範例: Crab Data (1/4)
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crabs {MASS}
Morphological Measurements on Leptograpsus Crabs
Description: The crabs data frame has 200 rows and 8 columns, describing 5 morphological 
measurements on 50 crabs each of two colour forms and both sexes, of the species Leptograpsus
variegatus (紫岩蟹) collected at Fremantle, W. Australia.

This data frame contains the following columns:
sp: species - "B" or "O" for blue or orange.
sex: “M” or “F” for male or female
index: 1:50 within each of the four groups.
FL: carapace frontal lobe (lip) size (mm).
RW: carapace rear width (mm).
CL: carapace length (mm).
CW: carapace width (mm).
BD: body depth (mm).

http://www.qm.qld.gov.au/Find+out+about/Animals+of+Queensland/Crustaceans/Co
mmon+marine+crustaceans/Crabs/Purple+Swift-footed+Shore+Crab#.VhPWYiurFhs

Aust. J. Zool. 1974, 22, 417-25

> library(MASS)
> data(crabs)
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範例: Crab Data (2/4)
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boxplot(crabs$FL~crabs$sp, main="FL", horizontal=T)
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範例: Crab Data (3/4)
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# tri: F,  cross: M
pairs(crabs[,4:8], 
pch=as.integer(crabs$sex)+1, 
col=c("blue","orange")[as.integer(crabs$sp)])

• The analysis of ratios of body 
measurements is deeply 
ingrained in the taxonomic 
literature. 

• Whether for plants or animals, 
certain ratios are commonly 
indicated in identification keys, 
diagnoses, and descriptions.

(Hannes Baur and Christoph Leuenberger, Analysis 
of Ratios in Multivariate Morphometry, Systematic 
Biology 60(6), 813-825.)
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範例: Crab Data (4/4)

 The use of ratios of measurements (i.e., of body proportions), has a 
long tradition and is deeply ingrained in morphometric taxonomy. 
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Three size vectors have been 
commonly proposed in the 
literature:  
(a) isometric size (the arithmetic 
mean of x), 
(b) allometric size, 
(c) shape-uncorrelated size.

par(mfrow=c(1,2))
mp <- as.integer(crabs$sex)+1
mc <- c("blue","orange")[as.integer(crabs$sp)]
isometric.size <- apply(crabs[,4:8], 1, mean)
plot(isometric.size,  log(crabs$BD/crabs$RW), pch=mp, col=mc)
plot(isometric.size, log(crabs$CL/crabs$CW), pch=mp, col=mc)
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範例: 房屋實價登錄資料
51/63

2014年臺灣資料分析競賽資料 (使用R軟體):
大約 682724筆紀錄，28個變數
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Species Data Transformation:
The Doubs Fish Data (1/2)

 Species abundances are dimensionally homogenous 
(expressed in the same physical units), quantitative (count, 
density, cover, biovolume, biomass, frequency, etc.) or 
semi-quantitative (classes) variables and restricted to 
positive or null values (zero meaning absence). 

 For these, simple transformations may be used to reduce 
the importance of observations with very high values: 
 sqrt() (square root), sqrt(sqrt()) (fourth root), or 
log1p() (natural logarithm of abundance + 1 to keep 
absence as zero).

 In extreme cases, to give the same weight to all positive 
abundances irrespective of their values, the data can be 
transformed to binary 1-0 form (presence–absence).
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Species Data Transformation:
The Doubs Fish Data (2/2)

 The decostand( ) function of the vegan package provides many 
options for common standardization of ecological data. 

 Standardization can be done relative to sites (site profiles), 
species (species profiles), or both (double profiles), depending 
on the focus of the analysis.
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Sphering for Bivariate Variables
 A scatterplot of the 2-D multivariate normal random 

variables. Note that these are not centered at the 
origin, and the cloud is not spherical. 

 The sphered data are now centered at the origin with 
a spherical spread. This is similar to the z-score 
standardization in 1-D.
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n <- 100
mu <- c(-2, 2)
sigma <- matrix(c(1, 0.5, 0.5, 1), ncol=2)
library(MASS)
x <- mvrnorm(n, mu, sigma)
plot(x[,1], x[,2], main="Simulated Data")

x.bar <- colMeans(x)
ei <- eigen(cov(x))
D <- diag(ei$values)
V <- ei$vectors
xc <- x - matrix(rep(1, n), ncol=1)%*%x.bar
z <- xc%*%V%*%diag((ei$values)^{-1/2})
plot(z[,1], z[,2], main="After Sphering")
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Sphering for Multivariate Variables
 The transformed variables will have a p-dimensional mean of 0 and a 

covariance matrix given by the identity matrix.
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A in Rnxn

- Cholesky Decomposition: A=UTU
- LU Decomposition: A=LU
- QR Decomposition: A=QR, Q:orthonormal, R: upper triangular 
- Singular Value Decomposition: A=VDVT
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Which Transformation? (1/2)

 It is better to use a transformation that other researchers commonly use in your field, 
such as the square-root transformation for count data or the log transformation for 
size data. 

 Even if an obscure transformation that not many people have heard of gives you 
slightly more normal or more homoscedastic data, it will probably be better to use a 
more common transformation so people don't get suspicious. 

 Remember that your data don't have to be perfectly normal and homoscedastic; 
parametric tests aren't extremely sensitive to deviations from their assumptions.

 It is also important that you decide which transformation to use before you do the 
statistical test. Trying different transformations until you find one that gives you a 
significant result is cheating. 

 If you have a large number of observations, compare the effects of different 
transformations on the normality and the homoscedasticity of the variable. 

 If you have a small number of observations, you may not be able to see much effect of 
the transformations on the normality and homoscedasticity; in that case, you should 
use whatever transformation people in your field routinely use for your variable. 
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http://www.biostathandbook.com/transformation.html
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Which Transformation? (2/2)

 The main criterion in choosing a transformation is: what 
works with the data?

It is important to consider as well two questions:
 What makes physical (biological, economic, whatever) 

sense, for example in terms of limiting behaviour as values 
get very small or very large? This question often leads to 
the use of logarithms.

 Can we keep dimensions and units simple and convenient? 
 Prefer measurement scales that are easy to think about. 
 Simplify: The cube root of a volume and the square root of an 

area both have the dimensions of length. Reciprocals usually 
have simple units. 
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Psychological Comments
 Although transformed scales may seem less natural, this is largely a psychological 

objection. Greater experience with transformation tends to reduce this feeling, simply 
because transformation so often works so well. 

 In fact, many familiar measured scales are really transformed scales: decibels, pH and 
the Richter scale of earthquake magnitude are all logarithmic.

 However, transformations cause debate even among experienced data  analysts:
 "This seems like a kind of cheating. You don't like how the data are, so you decide to change 

them."
 "I see that this is a clever trick that works nicely. But how do I know when this trick will work 

with some other data, or if another trick is needed, or if no transformation is needed?"
 "Transformations are needed because there is no guarantee that the world works on the scales 

it happens to be measured on."
 "Transformations are most appropriate when they match a scientific view of how a variable 

behaves."
 Often it helps to transform results back again, using the reverse or inverse transformation.

 Back transformation: Even though you've done a statistical test on a transformed 
variable, such as the log of fish abundance, it is not a good idea to report your means, 
standard errors, etc. in transformed units. 

58/63

http://fmwww.bc.edu/repec/bocode/t/transint.html
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Matrix of genes (rows) and samples (columns) 

cDNA Microarray Gene Expression Data59/63

微陣列資料統計分析 Statistical Microarray Data Analysis 
http://www.hmwu.idv.tw/index.php/mada 
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What is Normalization?
 Non-biological factor can contribute to the variability 

of data, in order to reliably compare data from 
multiple probe arrays, differences of non-biological 
origin must be minimized. 

 Normalization is a process of reducing unwanted 
variation across chips. 

 It may use information from multiple chips. 
 Normalization corrects for overall chip brightness and other 

factors that may influence the numerical value of expression 
intensity,

 Enabling the user to more confidently compare gene expression
estimates between samples. 
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Why Normalization?
 Main idea

 Remove the systematic bias in the data as completely 
possible while preserving the variation in the gene expression 
that occurs because of biologically relevant changes in 
transcription.

 Assumption
 The average gene does not change in its 

expression level in the biological sample being 
tested. 

 Most genes are not differentially expressed or up-
and down-regulated genes roughly cancel out the 
expression effect. 
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Normalization Methods for
cDNA Microarray Data

 Within-Array Normalization: location 
 Correcting for Different Responses of the Cy3 and Cy5 Channels   

 Linear Regression of Cy5 Against Cy3 (Global Normalization)
 Linear Regression of Log Ratio Against Average Intensity
 Nonlinear Regression of Log Ratio Against Average Intensity (Lowess 

Normalization)

 Correcting for Spatial Effects
 Two-Dimensional Lowess Regression
 Block-Block Loess Regression (Within Print-tip Group Normalization)

 Within-Array Normalization: scale

 Between-Array Normalization
 To enable comparison of multiple arrays

 Centering, Scaling, Distribution Normalization

 Paired-slides Normalization
(dye swap Experiments) (Slef-normalization)
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Case Studies Using R/BioConductor63/63


